New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Shape of the Universe

The shape of the Universe is a subject of investigation within physical cosmology. Cosmologists and astronomers describe the geometry of the Universe which includes both local geometry and global geometry. The shape of the universe can be determined by measuring the average density of matter within it, assuming that all matter is evenly distributed, rather than the distortions caused by 'dense' objects such as galaxies. This assumption is justified by the observations that, while the universe is "weakly" inhomogeneous and anisotropic (see the large-scale structure of the cosmos), it is on average homogeneous and isotropic. Considerations of the geometry of the universe can be split into two parts; the local geometry relates to the observable universe, while the global geometry relates to the universe as a whole - including that which we can't measure.

Related Stories
 


Space & Time News

October 16, 2025

3I/ATLAS, a mysterious interstellar object racing toward the Sun, is baffling scientists with its speed and origin. Some researchers suggest it could even be alien-made, drawing comparisons to probes ...
High above the Sun’s blazing equator lie its mysterious poles, the birthplace of fast solar winds and the heart of its magnetic heartbeat. For decades, scientists have struggled to see these regions, hidden from Earth’s orbit. With the upcoming ...
A colossal northern asteroid impact billions of years ago likely shaped the Moon’s south polar region and explains its uneven terrain. Researchers found that the South Pole-Aitken Basin formed from a glancing northern strike, revealing deep ...
ESA’s Mars orbiters have observed comet 3I/ATLAS, only the third interstellar comet ever discovered. The faint, distant object revealed a glowing coma as it was heated by the Sun. Researchers are still studying the data to understand its makeup ...
Mars may look calm, but new research reveals it’s a world of fierce winds and swirling dust devils racing at hurricane-like speeds. Using deep learning on thousands of satellite images from European orbiters, scientists have discovered that ...
ESA has inaugurated a powerful new 35-meter deep space antenna at its New Norcia site in Western Australia, marking a major boost to Europe’s ability to communicate with spacecraft exploring the ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...
A new boron-rich compound, manganese diboride, delivers much higher energy density than current solid-rocket materials while remaining stable until intentionally ignited. Its power comes from an unusual, strained atomic structure formed during ...
Astronomers have long relied on supercomputers to simulate the immense structure of the Universe, but a new tool called Effort.jl is changing that. By mimicking the behavior of complex cosmological models, this emulator delivers results with the ...
Faint hydrogen signals from the cosmic Dark Ages may soon help determine the mass of dark matter particles. Simulations suggest future Moon-based observatories could distinguish between warm and cold dark matter, providing long-sought answers about ...
A new AI model from NYU Abu Dhabi predicts solar wind days in advance with far greater accuracy than existing methods. By analyzing ultraviolet solar images, it could help protect satellites, navigation systems, and power grids from disruptive space ...
The booming space industry has filled the skies with rockets and satellites, but this rapid expansion comes with a hidden danger: slowing the recovery of the ozone layer. Rocket launches and burning space debris release chlorine, soot, and metals ...

Latest Headlines

updated 12:56 pm ET