New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Big Bang

The Big Bang is the cosmological model of the universe whose primary assertion is that the universe has expanded into its current state from a primordial condition of enormous density and temperature. The term is also used in a narrower sense to describe the fundamental "fireball" that erupted at or close to an initial timepoint in the history of our observed spacetime.

Theoretical support for the Big Bang comes from mathematical models. These models show that a Big Bang is consistent with general relativity and with the cosmological principle, which states that the properties of the universe should be independent of position or orientation.

Observational evidence for the Big Bang includes the analysis of the spectrum of light from galaxies, which reveal a shift towards longer wavelengths proportional to each galaxy's distance in a relationship described by Hubble's law. Combined with the assumption that observers located anywhere in the universe would make similar observations (the Copernican principle), this suggests that space itself is expanding. The next most important observational evidence was the discovery of cosmic microwave background radiation in 1964. This had been predicted as a relic from when hot ionized plasma of the early universe first cooled sufficiently to form neutral hydrogen and allow space to become transparent to light, and its discovery led to general acceptance among physicists that the Big Bang is the best model for the origin and evolution of the universe. A third important line of evidence is the relative proportion of light elements in the universe, which is a close match to predictions for the formation of light elements in the first minutes of the universe, according to Big Bang nucleosynthesis.

Extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past. This singularity signals the breakdown of general relativity. How closely we can extrapolate towards the singularity is debated—certainly not earlier than the Planck epoch. The early hot, dense phase is itself referred to as "the Big Bang", and is considered the "birth" of our universe. Based on measurements of the expansion using Type Ia supernovae, measurements of temperature fluctuations in the cosmic microwave background, and measurements of the correlation function of galaxies, the universe has a calculated age of 13.7 ± 0.2 billion years.

The earliest phases of the Big Bang are subject to much speculation. In the most common models, the universe was filled homogeneously and isotropically with an incredibly high energy density, huge temperatures and pressures, and was very rapidly expanding and cooling. Approximately 10−35 seconds into the expansion, a phase transition caused a cosmic inflation, during which the universe grew exponentially. After inflation stopped, the universe consisted of a quark-gluon plasma, as well as all other elementary particles. Temperatures were so high that the random motions of particles were at relativistic speeds, and particle-antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and anti-leptons — of the order of 1 part in 30 million. This resulted in the predominance of matter over antimatter in the present universe.

Related Stories
 


Space & Time News

October 31, 2025

Scientists have developed a groundbreaking tool called Effort.jl that lets them simulate the structure of the universe using just a laptop. The team created a system that dramatically speeds up how researchers study cosmic data, turning what once ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
Two Sydney PhD students have pulled off a remarkable space science feat from Earth—using AI-driven software to correct image blurring in NASA’s James Webb Space Telescope. Their innovation, called AMIGO, fixed distortions in the telescope’s ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
3I/ATLAS, a mysterious interstellar object racing toward the Sun, is baffling scientists with its speed and origin. Some researchers suggest it could even be alien-made, drawing comparisons to probes ...
High above the Sun’s blazing equator lie its mysterious poles, the birthplace of fast solar winds and the heart of its magnetic heartbeat. For decades, scientists have struggled to see these regions, hidden from Earth’s orbit. With the upcoming ...
A colossal northern asteroid impact billions of years ago likely shaped the Moon’s south polar region and explains its uneven terrain. Researchers found that the South Pole-Aitken Basin formed from a glancing northern strike, revealing deep ...
ESA’s Mars orbiters have observed comet 3I/ATLAS, only the third interstellar comet ever discovered. The faint, distant object revealed a glowing coma as it was heated by the Sun. Researchers are still studying the data to understand its makeup ...
Mars may look calm, but new research reveals it’s a world of fierce winds and swirling dust devils racing at hurricane-like speeds. Using deep learning on thousands of satellite images from European orbiters, scientists have discovered that ...
ESA has inaugurated a powerful new 35-meter deep space antenna at its New Norcia site in Western Australia, marking a major boost to Europe’s ability to communicate with spacecraft exploring the ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...

Latest Headlines

updated 12:56 pm ET