New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Dark matter

In astrophysics and cosmology, dark matter is hypothetical matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. According to present observations of structures larger than galaxy-sized as well as Big Bang cosmology, dark matter accounts for the vast majority of mass in the observable universe. Fritz Zwicky used it for the first time to declare the observed phenomena consistent with dark matter observations as the rotational speeds of galaxies and orbital velocities of galaxies in clusters, gravitational lensing of background objects by galaxy clusters such as the Bullet cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies. Dark matter also plays a central role in structure formation and galaxy evolution, and has measurable effects on the anisotropy of the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is called the "dark matter component."

The composition of dark matter is unknown, but may include ordinary and heavy neutrinos, recently postulated elementary particles such as WIMPs and axions, astronomical bodies such as dwarf stars and planets (collectively called MACHOs), and clouds of nonluminous gas. Current evidence favors models in which the primary component of dark matter is new elementary particles, collectively called non-baryonic dark matter.

The dark matter component has vastly more mass than the "visible" component of the universe. At present, the density of ordinary baryons and radiation in the universe is estimated to be equivalent to about one hydrogen atom per cubic metre of space. Only about 4% of the total energy density in the universe (as inferred from gravitational effects) can be seen directly. About 22% is thought to be composed of dark matter. The remaining 74% is thought to consist of dark energy, an even stranger component, distributed diffusely in space. Some hard-to-detect baryonic matter makes a contribution to dark matter, but constitutes only a small portion. Determining the nature of this missing mass is one of the most important problems in modern cosmology and particle physics.

Related Stories
 


Space & Time News

August 24, 2025

Astronomers using AI have captured a once-in-a-lifetime cosmic event: a massive star’s violent death triggered by its black hole companion. The explosion, known as SN 2023zkd, not only produced a brilliant supernova but also shocked scientists by ...
NASA and ISRO s NISAR satellite has just reached a major milestone: the successful deployment of its enormous 39-foot antenna reflector in orbit. Folded up like an umbrella during launch, the reflector is now fully extended and ready to support ...
With its two tiny CubeSats, NASA’s PREFIRE mission is capturing invisible heat escaping from Earth, offering clues to how ice, clouds, and storms influence the climate system. The insights could lead to better weather forecasts and a deeper ...
Rising CO₂ levels will make the upper atmosphere colder and thinner, altering how geomagnetic storms impact satellites. Future storms could cause sharper density spikes despite lower overall density, increasing drag-related ...
Thirteen years after landing on Mars, NASA’s Curiosity rover is running smarter and more efficiently than ever. With new autonomy and multitasking capabilities, it’s maximizing the output from its long-lasting nuclear power source while ...
Engineers at the University of Wisconsin-Madison uncovered a critical flaw in how lunar and Martian rovers are tested on Earth. Simulations revealed that test results have been misleading for decades because researchers only adjusted rover weight to ...
UF engineers, backed by DARPA and NASA, are perfecting laser-forming techniques that let metal sheets fold themselves into giant solar arrays, antennas, and even space-station parts right in ...
The LSST camera at the Vera C. Rubin Observatory has released its jaw-dropping first images, each capturing 45 times the area of the full moon in one shot. Over the next ten years, this cosmic giant will scan the southern sky in ultra-HD, helping ...
Imagine printing your Martian home from dust, sunlight, and a bit of biology. A new synthetic lichen system uses fungi and bacteria to grow building materials directly from Martian soil, completely autonomously and without human ...
Lichen from the Mojave Desert has stunned scientists by surviving months of lethal UVC radiation, suggesting life could exist on distant planets orbiting volatile stars. The secret? A microscopic “sunscreen” layer that protects their vital ...
AI has helped astronomers crack open some of the universe s best-kept secrets by analyzing massive datasets about black holes. Using over 12 million simulations powered by high-throughput computing, scientists discovered that the Milky Way's central ...
By using a clever quantum approach that involves two "hands" on a clock one moving quickly and invisibly in the quantum world, the other more traditionally scientists have found a way to boost timekeeping precision dramatically. Even better, this ...

Latest Headlines

updated 12:56 pm ET