New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Dark matter

In astrophysics and cosmology, dark matter is hypothetical matter of unknown composition that does not emit or reflect enough electromagnetic radiation to be observed directly, but whose presence can be inferred from gravitational effects on visible matter. According to present observations of structures larger than galaxy-sized as well as Big Bang cosmology, dark matter accounts for the vast majority of mass in the observable universe. Fritz Zwicky used it for the first time to declare the observed phenomena consistent with dark matter observations as the rotational speeds of galaxies and orbital velocities of galaxies in clusters, gravitational lensing of background objects by galaxy clusters such as the Bullet cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies. Dark matter also plays a central role in structure formation and galaxy evolution, and has measurable effects on the anisotropy of the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is called the "dark matter component."

The composition of dark matter is unknown, but may include ordinary and heavy neutrinos, recently postulated elementary particles such as WIMPs and axions, astronomical bodies such as dwarf stars and planets (collectively called MACHOs), and clouds of nonluminous gas. Current evidence favors models in which the primary component of dark matter is new elementary particles, collectively called non-baryonic dark matter.

The dark matter component has vastly more mass than the "visible" component of the universe. At present, the density of ordinary baryons and radiation in the universe is estimated to be equivalent to about one hydrogen atom per cubic metre of space. Only about 4% of the total energy density in the universe (as inferred from gravitational effects) can be seen directly. About 22% is thought to be composed of dark matter. The remaining 74% is thought to consist of dark energy, an even stranger component, distributed diffusely in space. Some hard-to-detect baryonic matter makes a contribution to dark matter, but constitutes only a small portion. Determining the nature of this missing mass is one of the most important problems in modern cosmology and particle physics.

Related Stories
 


Space & Time News

October 31, 2025

Scientists have developed a groundbreaking tool called Effort.jl that lets them simulate the structure of the universe using just a laptop. The team created a system that dramatically speeds up how researchers study cosmic data, turning what once ...
Tohoku University researchers have found a way to make quantum sensors more sensitive by connecting superconducting qubits in optimized network patterns. These networks amplify faint signals possibly left by dark matter. The approach outperformed ...
Two Sydney PhD students have pulled off a remarkable space science feat from Earth—using AI-driven software to correct image blurring in NASA’s James Webb Space Telescope. Their innovation, called AMIGO, fixed distortions in the telescope’s ...
A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
3I/ATLAS, a mysterious interstellar object racing toward the Sun, is baffling scientists with its speed and origin. Some researchers suggest it could even be alien-made, drawing comparisons to probes ...
High above the Sun’s blazing equator lie its mysterious poles, the birthplace of fast solar winds and the heart of its magnetic heartbeat. For decades, scientists have struggled to see these regions, hidden from Earth’s orbit. With the upcoming ...
A colossal northern asteroid impact billions of years ago likely shaped the Moon’s south polar region and explains its uneven terrain. Researchers found that the South Pole-Aitken Basin formed from a glancing northern strike, revealing deep ...
ESA’s Mars orbiters have observed comet 3I/ATLAS, only the third interstellar comet ever discovered. The faint, distant object revealed a glowing coma as it was heated by the Sun. Researchers are still studying the data to understand its makeup ...
Mars may look calm, but new research reveals it’s a world of fierce winds and swirling dust devils racing at hurricane-like speeds. Using deep learning on thousands of satellite images from European orbiters, scientists have discovered that ...
ESA has inaugurated a powerful new 35-meter deep space antenna at its New Norcia site in Western Australia, marking a major boost to Europe’s ability to communicate with spacecraft exploring the ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...

Latest Headlines

updated 12:56 pm ET