New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Large-scale structure of the cosmos

In physical cosmology, the term large-scale structure refers to the characterization of observable distributions of matter and light on the largest scales (typically on the order of billions of light-years). Sky surveys and mappings of the various wavelength bands of electromagnetic radiation (in particular 21-cm emission) have yielded much information on the content and character of the universe's structure.

The organization of structure arguably begins at the stellar level, though most cosmologists rarely address astrophysics on that scale. Stars are organised into galaxies, which in turn form clusters and superclusters that are separated by immense voids. Prior to 1989, it was commonly assumed that virialized galaxy clusters were the largest structures in existence, and that they were distributed more or less uniformly throughout the universe in every direction. However, based on redshift survey data, in 1989 Margaret Geller and John Huchra discovered the "Great Wall," a sheet of galaxies more than 500 million light-years long and 200 million wide, but only 15 million light-years thick. The existence of this structure escaped notice for so long because it requires locating the position of galaxies in three dimensions, which involves combining location information about the galaxies with distance information from redshifts. In April 2003, another large-scale structure was discovered, the Sloan Great Wall. However, technically it is not a 'structure', since the objects in it are not gravitationally related with each other but only appear this way, caused by the distance measurement that was used. One of the biggest voids in space is the Capricornus void, with an est. diameter of 230 million light years. However in August 2007 a new supervoid was confirmed in the constellation Eridanus, which is nearly a billion light years across.

In more recent studies the universe appears as a collection of giant bubble-like voids separated by sheets and filaments of galaxies, with the superclusters appearing as occasional relatively dense nodes.

Related Stories
 


Space & Time News

January 17, 2026

A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
A distant pulsar’s radio signal flickers as it passes through space, much like stars twinkle in Earth’s atmosphere. By monitoring this effect for 10 months, researchers watched the pattern slowly evolve as gas, Earth, and the pulsar all moved. ...
Mars looks familiar from afar, but surviving there means creating a protective oasis in a hostile world. Instead of shipping construction materials from Earth, researchers are exploring how to use Martian soil as the raw ingredient. Two tough ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
As we age, our immune system quietly loses its edge, and scientists have uncovered a surprising reason why. A protein called platelet factor 4 naturally declines over time, allowing blood stem cells to multiply too freely and drift toward unhealthy, ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
Astronomers have uncovered a massive hidden planet and a rare “failed star” by combining ultra-precise space data with some of the sharpest ground-based images ever taken. Using the Subaru Telescope in Hawaiʻi, the OASIS survey tracked subtle ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers have shown that quantum signals can be sent from Earth up to satellites, not just down from space as previously believed. This breakthrough could make global quantum networks far more powerful, affordable, and ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Earth’s orbit is getting crowded with broken satellites and leftover rocket parts. Researchers say the solution is to build spacecraft that can be repaired, reused, or recycled instead of abandoned. They also want new tools to collect old debris ...

Latest Headlines

updated 12:56 pm ET