New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Dark energy

In physical cosmology, dark energy is a hypothetical form of energy that permeates all of space and tends to increase the rate of expansion of the universe. Assuming the existence of dark energy is the most popular way to explain recent observations that the universe appears to be expanding at an accelerating rate. In the standard model of cosmology, dark energy currently accounts for almost three-quarters of the total mass-energy of the universe.

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli, dynamic fields whose energy density can vary in time and space. In fact contributions from scalar fields which are constant in space are usually also included in the cosmological constant. The cosmological constant is thought to arise from the vacuum energy. Scalar fields which do change in space are hard to distinguish from a cosmological constant, because the change may be extremely slow.

High-precision measurements of the expansion of the universe are required to understand how the speed of the expansion changes over time. The rate of expansion is parameterized by the cosmological equation of state. Measuring the equation of state of dark energy is one of the biggest efforts in observational cosmology today.

Adding the cosmological constant to cosmology's standard FLRW metric leads to the Lambda-CDM model, which has been referred to as the "standard model" of cosmology because of its precise agreement with observations.

The exact nature of this dark energy is a matter of speculation. It is known to be very homogeneous, not very dense and is not known to interact through any of the fundamental forces other than gravity. Since it is not very dense, it is hard to imagine experiments to detect it in the laboratory. Dark energy can only have such a profound impact on the universe, making up 70% of all energy, because it uniformly fills otherwise empty space. The two leading models are quintessence and the cosmological constant.

The simplest explanation for dark energy is that it is simply the "cost of having space": that is, a volume of space has some intrinsic, fundamental energy. Another possibility is that dark energy may become dark matter when buffeted by baryonic particles, thus leading to particle-like excitations in some type of dynamical field, referred to as quintessence. Quintessence differs from the cosmological constant in that it can vary in space and time. In order for it not to clump and form structure like matter, it must be very light so that it has a large Compton wavelength.

Related Stories
 


Space & Time News

January 21, 2026

Physicists have unveiled a new way to simulate a mysterious form of dark matter that can collide with itself but not with normal matter. This self-interacting dark matter may trigger a dramatic collapse inside dark matter halos, heating and ...
When scientists sent bacteria-infecting viruses to the International Space Station, the microbes did not behave the same way they do on Earth. In microgravity, infections still occurred, but both viruses and bacteria evolved differently over time. ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
A distant pulsar’s radio signal flickers as it passes through space, much like stars twinkle in Earth’s atmosphere. By monitoring this effect for 10 months, researchers watched the pattern slowly evolve as gas, Earth, and the pulsar all moved. ...
Mars looks familiar from afar, but surviving there means creating a protective oasis in a hostile world. Instead of shipping construction materials from Earth, researchers are exploring how to use Martian soil as the raw ingredient. Two tough ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
As we age, our immune system quietly loses its edge, and scientists have uncovered a surprising reason why. A protein called platelet factor 4 naturally declines over time, allowing blood stem cells to multiply too freely and drift toward unhealthy, ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
Astronomers have uncovered a massive hidden planet and a rare “failed star” by combining ultra-precise space data with some of the sharpest ground-based images ever taken. Using the Subaru Telescope in Hawaiʻi, the OASIS survey tracked subtle ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers have shown that quantum signals can be sent from Earth up to satellites, not just down from space as previously believed. This breakthrough could make global quantum networks far more powerful, affordable, and ...

Latest Headlines

updated 12:56 pm ET