New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Introduction to quantum mechanics

Quantum mechanics is a fundamental branch of physics that describes the behavior of matter and energy at the smallest scales—typically at the level of atoms, electrons, photons, and subatomic particles. Unlike classical physics, which accurately explains the motion of macroscopic objects, quantum mechanics reveals a world governed by probabilities, wave-particle duality, and quantized energy states. It provides the theoretical framework for understanding the physical properties of particles and forces at the microscopic level and underpins much of modern technology and scientific discovery.

At the heart of quantum mechanics is the idea that particles can behave like waves, and waves can exhibit particle-like properties. Electrons, for example, do not orbit the nucleus in fixed paths as once thought, but exist in regions of probability known as orbitals. The behavior of these particles is governed by mathematical functions called wavefunctions, which describe the likelihood of finding a particle in a particular location. The famous Heisenberg uncertainty principle states that one cannot simultaneously know both the exact position and momentum of a particle, highlighting the intrinsic limits of measurement at quantum scales.

One of the most counterintuitive features of quantum mechanics is superposition, where particles can exist in multiple states at once until measured. Another is entanglement, a phenomenon where two or more particles become correlated in such a way that the state of one instantly influences the state of the other, regardless of the distance between them. These effects have been experimentally confirmed and challenge our classical understanding of causality and locality.

Quantum mechanics has led to revolutionary advances in science and technology. It forms the basis of quantum chemistry, solid-state physics, and nuclear physics, and it explains the structure of atoms and molecules, the behavior of semiconductors, and the functioning of lasers. Technologies such as MRI machines, transistors, and atomic clocks all rely on quantum principles. More recently, the field has given rise to quantum computing and quantum cryptography, which promise to transform computing power and information security.

Though its predictions are mathematically precise and experimentally verified, quantum mechanics continues to raise profound philosophical questions about the nature of reality, observation, and determinism. Despite its abstract and often unintuitive concepts, it remains one of the most successful and predictive theories in all of science, offering a powerful lens through which to understand the universe at its most fundamental level.

Related Stories
 


Matter & Energy News

August 1, 2025

A Penn State-led research team has unraveled the long-standing mystery of how lightning begins inside thunderclouds. Their findings offer the first quantitative, physics-based explanation for lightning initiation—and a glimpse into the stormy ...
Scientists have cracked open a mysterious layer inside batteries, using cutting-edge 3D atomic force microscopy to capture the dynamic molecular structures at their solid-liquid interfaces. These once-invisible electrical double layers (EDLs) twist, ...
Deep beneath the Swiss-French border, the Large Hadron Collider unleashes staggering amounts of energy and radiation—enough to fry most electronics. Enter a team of Columbia engineers, who built ultra-rugged, radiation-resistant chips that now ...
Researchers are exploring AI-powered digital twins as a game-changing tool to accelerate the clean energy transition. These digital models simulate and optimize real-world energy systems like wind, solar, geothermal, hydro, and biomass. But while ...
Deep in Serbia's Jadar Valley, scientists discovered a mineral with an uncanny resemblance to Superman's Kryptonite both in composition and name. Dubbed jadarite, this dull white crystal lacks the ...
A team at KAUST has revealed that the short lifespan of aqueous batteries is primarily due to "free water" molecules triggering harmful chemical reactions at the anode. By adding affordable sulfate salts like zinc sulfate, they significantly reduced ...
Aalto University physicists in Finland have set a new benchmark in quantum computing by achieving a record-breaking millisecond coherence in a transmon qubit — nearly doubling prior limits. This development not only opens the door to far more ...
Imagine concrete that not only survives wildfires and extreme weather, but heals itself and absorbs carbon from the air. Scientists at USC have created an AI model called Allegro-FM that simulates billions of atoms at once, helping design futuristic ...
Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular ...
Scientists have cracked a century-old physics mystery by detecting magnetic signals in non-magnetic metals using only light and a revamped laser technique. Previously undetectable, these faint magnetic “whispers” are now measurable, revealing ...
Using advanced metasurfaces, researchers can now twist light to uncover hidden images and detect molecular handedness, potentially revolutionizing data encryption, biosensing, and drug ...
A powerful new technique harnesses swirling plasma inside laser-blasted microtubes to produce record-breaking magnetic fields—rivaling those near neutron stars—all within a compact laboratory setup. This innovation promises to transform ...

Latest Headlines

updated 12:56 pm ET