New! Sign up for our free email newsletter.
Science News
from research organizations

Hidden dimensions could explain where mass comes from

Date:
December 15, 2025
Source:
Slovak Academy of Sciences
Summary:
A new theory proposes that the universe’s fundamental forces and particle properties may arise from the geometry of hidden extra dimensions. These dimensions could twist and evolve over time, forming stable structures that generate mass and symmetry breaking on their own. The approach may even explain cosmic expansion and predict a new particle. It hints at a universe built entirely from geometry.
Share:
FULL STORY

The geometry of space itself may play a far more central role in physics than previously thought. Instead of serving only as the backdrop where forces act, spacetime may be responsible for the forces and particles that make up the universe.

New theoretical work suggests that the fundamental behavior of nature could arise directly from the structure of spacetime, pointing to geometry as the common origin of physical interactions.

Hidden Dimensions and Seven-Dimensional Geometry

In a paper published in Nuclear Physics B, physicist Richard Pincak and collaborators examine whether the properties of matter and forces can emerge from the geometry of unseen dimensions beyond everyday space.

Their research proposes that the universe includes additional dimensions that are not directly observable. These dimensions may be compact and folded into complex seven-dimensional shapes called G2-manifolds. Until now, such geometric structures were typically treated as fixed and unchanging. The new study instead explores what happens when these shapes are allowed to evolve over time through a mathematical process known as the G2-Ricci flow, which gradually alters their internal geometry.

Twisting Geometry and Stable Structures

"As in organic systems, such as the twisting of DNA or the handedness of amino acids, these extra-dimensional structures can possess torsion, a kind of intrinsic twist," explains Pincak. This torsion introduces a built-in rotation within the geometry itself.

When the researchers modeled how these twisted shapes change over time, they found that the geometry can naturally settle into stable patterns called solitons. "When we let them evolve in time, we find that they can settle into stable configurations called solitons. These solitons could provide a purely geometric explanation of phenomena such as spontaneous symmetry breaking."

Rethinking the Origin of Mass

In the Standard Model of particle physics, mass arises through interactions with the Higgs field, which gives weight to particles such as the W and Z bosons. The new theory suggests a different possibility. Instead of relying on a separate field, mass may result from torsion within extra-dimensional geometry itself.

"In our picture," Pincak says, "matter emerges from the resistance of geometry itself, not from an external field." In this view, mass reflects how spacetime responds to its own internal structure rather than the influence of an added physical ingredient.

Cosmic Expansion and a Possible New Particle

The researchers also connect geometric torsion to the curvature of spacetime on large scales. This relationship could help explain the positive cosmological constant associated with the accelerating expansion of the universe.

Beyond these cosmological implications, the team speculates about the existence of a previously unknown particle linked to torsion, which they call the "Torstone." If real, it could potentially be detected in future experiments.

Extending Einstein's Geometric Vision

The broader ambition of the work is to push Einstein's idea further. If gravity arises from geometry, the authors ask whether all fundamental forces might share the same origin. As Pincak puts it, "Nature often prefers simple solutions. Perhaps the masses of the W and Z bosons come not from the famous Higgs field, but directly from the geometry of seven-dimensional space."

The article published in the journal Nuclear Physics B.

The research was supported by R3 project No.09I03-03-V04-00356.



Journal Reference:

  1. Richard Pinčák, Alexander Pigazzini, Michal Pudlák, Erik Bartoš. Introduction of the G2-Ricci flow: Geometric implications for spontaneous symmetry breaking and gauge boson masses. Nuclear Physics B, 2025; 1017: 116959 DOI: 10.1016/j.nuclphysb.2025.116959

Cite This Page:

Slovak Academy of Sciences. "Hidden dimensions could explain where mass comes from." ScienceDaily. ScienceDaily, 15 December 2025. <www.sciencedaily.com/releases/2025/12/251215084222.htm>.
Slovak Academy of Sciences. (2025, December 15). Hidden dimensions could explain where mass comes from. ScienceDaily. Retrieved December 15, 2025 from www.sciencedaily.com/releases/2025/12/251215084222.htm
Slovak Academy of Sciences. "Hidden dimensions could explain where mass comes from." ScienceDaily. www.sciencedaily.com/releases/2025/12/251215084222.htm (accessed December 15, 2025).

Explore More

from ScienceDaily

RELATED STORIES