New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Schrödinger's cat

Schrödinger's cat is a seemingly paradoxical thought experiment devised by Erwin Schrödinger that attempts to illustrate the incompleteness of an early interpretation of quantum mechanics when going from subatomic to macroscopic systems. Schrödinger proposed his "cat" after debates with Albert Einstein over the Copenhagen interpretation, which Schrödinger defended, stating in essence that if a scenario existed where a cat could be so isolated from external interference (decoherence), the state of the cat can only be known as a superposition (combination) of possible rest states (eigenstates), because finding out (measuring the state) cannot be done without the observer interfering with the experiment — the measurement system (the observer) is entangled with the experiment.

The thought experiment serves to illustrate the strangeness of quantum mechanics and the mathematics necessary to describe quantum states. The idea of a particle existing in a superposition of possible states, while a fact of quantum mechanics, is a concept that does not scale to large systems (like cats), which are not indeterminably probabilistic in nature. Philosophically, these positions which emphasize either probability or determined outcomes are called (respectively) positivism and determinism.

Related Stories
 


Matter & Energy News

December 26, 2025

A shiny gray crystal called platinum-bismuth-two hides an electronic world unlike anything scientists have seen before. Researchers discovered that only the crystal’s outer surfaces become superconducting—allowing electrons to flow with zero ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
A new discovery shows that messy, stray light can be used to clean up quantum systems instead of disrupting them. University of Iowa researchers found that unwanted photons produced by lasers can be canceled out by carefully tuning the light itself. ...
Superconductors promise loss-free electricity, but most only work at extreme cold. Hydrogen-rich materials changed that—yet their inner workings remained hidden because they only exist under enormous pressure. Now, researchers have directly ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers in Sweden have unveiled a way to create high-performance electronic electrodes using nothing more than visible light and specially designed water-soluble monomers. This gentle, chemical-free approach lets conductive plastics form ...
Researchers at the University of Warsaw have unveiled a breakthrough method for detecting and precisely calibrating terahertz frequency combs using a quantum antenna made from Rydberg atoms. By combining atomic electrometry with a powerful ...
MOCHI uses microscopic, air-filled channels to stop heat in its tracks while remaining nearly crystal clear. If scaled up, it could transform windows into powerful energy savers and solar ...
Scientists developed a high-performance hydrogen-production catalyst using lignin, a common waste product from paper and biorefinery processes. The nickel–iron oxide nanoparticles embedded in carbon fibers deliver fast kinetics, long-term ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Scientists have discovered how to electrically power insulating nanoparticles using organic molecules that act like tiny antennas. These hybrids generate extremely pure near-infrared light, ideal for medical diagnostics and advanced communications. ...
Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...

Latest Headlines

updated 12:56 pm ET