New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum entanglement

Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated. This leads to correlations between observable physical properties of the systems. For example, it is possible to prepare two particles in a single quantum state such that when one is observed to be spin-up, the other one will always be observed to be spin-down and vice versa, this despite the fact that it is impossible to predict, according to quantum mechanics, which set of measurements will be observed. As a result, measurements performed on one system seem to be instantaneously influencing other systems entangled with it. But quantum entanglement does not enable the transmission of classical information faster than the speed of light.

Quantum entanglement has applications in the emerging technologies of quantum computing and quantum cryptography, and has been used to realize quantum teleportation experimentally. At the same time, it prompts some of the more philosophically oriented discussions concerning quantum theory. The correlations predicted by quantum mechanics, and observed in experiment, reject the principle of local realism, which is that information about the state of a system should only be mediated by interactions in its immediate surroundings. Different views of what is actually occurring in the process of quantum entanglement can be related to different interpretations of quantum mechanics.

Related Stories
 


Matter & Energy News

December 15, 2025

Researchers in Sweden have unveiled a way to create high-performance electronic electrodes using nothing more than visible light and specially designed water-soluble monomers. This gentle, chemical-free approach lets conductive plastics form ...
Researchers at the University of Warsaw have unveiled a breakthrough method for detecting and precisely calibrating terahertz frequency combs using a quantum antenna made from Rydberg atoms. By combining atomic electrometry with a powerful ...
MOCHI uses microscopic, air-filled channels to stop heat in its tracks while remaining nearly crystal clear. If scaled up, it could transform windows into powerful energy savers and solar ...
Scientists developed a high-performance hydrogen-production catalyst using lignin, a common waste product from paper and biorefinery processes. The nickel–iron oxide nanoparticles embedded in carbon fibers deliver fast kinetics, long-term ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Scientists have discovered how to electrically power insulating nanoparticles using organic molecules that act like tiny antennas. These hybrids generate extremely pure near-infrared light, ideal for medical diagnostics and advanced communications. ...
Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...
Researchers engineered a strained germanium layer on silicon that allows charge to move faster than in any silicon-compatible material to date. This record mobility could lead to chips that run cooler, faster, and with dramatically lower energy ...
Researchers have discovered a new way to grow graphene that deliberately adds structural defects to enhance its usefulness in electronics, sensors, catalysts, and more. Using a specially shaped molecule called azupyrene, scientists can produce ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
Engineers have unlocked a new class of supercapacitor material that could rival traditional batteries in energy while charging dramatically faster. By redesigning carbon structures into highly curved, accessible graphene networks, the team achieved ...
Quantum communication is edging closer to reality thanks to a breakthrough in teleporting information between photons from different quantum dots—one of the biggest challenges in building a quantum internet. By creating nearly identical ...

Latest Headlines

updated 12:56 pm ET