New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum entanglement

Quantum entanglement is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other, even though the individual objects may be spatially separated. This leads to correlations between observable physical properties of the systems. For example, it is possible to prepare two particles in a single quantum state such that when one is observed to be spin-up, the other one will always be observed to be spin-down and vice versa, this despite the fact that it is impossible to predict, according to quantum mechanics, which set of measurements will be observed. As a result, measurements performed on one system seem to be instantaneously influencing other systems entangled with it. But quantum entanglement does not enable the transmission of classical information faster than the speed of light.

Quantum entanglement has applications in the emerging technologies of quantum computing and quantum cryptography, and has been used to realize quantum teleportation experimentally. At the same time, it prompts some of the more philosophically oriented discussions concerning quantum theory. The correlations predicted by quantum mechanics, and observed in experiment, reject the principle of local realism, which is that information about the state of a system should only be mediated by interactions in its immediate surroundings. Different views of what is actually occurring in the process of quantum entanglement can be related to different interpretations of quantum mechanics.

Related Stories
 


Matter & Energy News

September 12, 2025

For the first time, scientists have observed electrons in graphene behaving like a nearly perfect quantum fluid, challenging a long-standing puzzle in physics. By creating ultra-clean samples, the team at IISc uncovered a surprising decoupling of ...
Physicists have unveiled a new superconducting detector sensitive enough to hunt dark matter particles smaller than electrons. By capturing faint photon signals, the device pushes the search into uncharted ...
Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular ...
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...
Scientists at the University of Tokyo have unveiled “gold quantum needles,” a newly discovered nanocluster structure formed under unusual synthesis conditions. Unlike typical spherical clusters, these elongated, pencil-shaped formations display ...
Scientists have created a transparent solar coating that turns ordinary windows into clean energy generators without affecting clarity. Using cholesteric liquid crystal layers, the coating redirects polarized sunlight to the window edges where solar ...
A hidden quantum geometry that distorts electron paths has finally been observed in real materials. This “quantum metric,” once thought purely theoretical, may revolutionize electronics, superconductivity, and ultrafast ...
A Japanese research team successfully harnessed E. coli to produce PDCA, a strong, biodegradable plastic alternative. Their method avoids toxic byproducts and achieves record production levels, overcoming key roadblocks with creative ...
Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin ...
Scientists in Japan have uncovered a strange new behavior in “heavy” electrons — particles that act as if they carry far more mass than usual. These electrons were found to be entangled, sharing a deep quantum link, and doing so in ways tied ...
Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% ...
Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials ...

Latest Headlines

updated 12:56 pm ET