New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum computer

A quantum computer is any device for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical (or conventional) computer, information is stored as bits; in a quantum computer, it is stored as qubits (quantum bits). The basic principle of quantum computation is that the quantum properties can be used to represent and structure data, and that quantum mechanisms can be devised and built to perform operations with this data.

Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits. Research in both theoretical and practical areas continues at a frantic pace, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.

If large-scale quantum computers can be built, they will be able to solve certain problems exponentially faster than any of our current classical computers (for example Shor's algorithm). Quantum computers are different from other computers such as DNA computers and traditional computers based on transistors. Some computing architectures such as optical computers may use classical superposition of electromagnetic waves, but without some specifically quantum mechanical resources such as entanglement, they have less potential for computational speed-up than quantum computers.

The power of quantum computers

Integer factorization is believed to be computationally infeasible with an ordinary computer for large integers that are the product of only a few prime numbers (e.g., products of two 300-digit primes). By comparison, a quantum computer could solve this problem more efficiently than a classical computer using Shor's algorithm to find its factors. This ability would allow a quantum computer to "break" many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of bits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers, including forms of RSA.

These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security. The only way to increase the security of an algorithm like RSA would be to increase the key size and hope that an adversary does not have the resources to build and use a powerful enough quantum computer. It seems plausible that it will always be possible to build classical computers that have more bits than the number of qubits in the largest quantum computer.

Related Stories
 


Computers & Math News

October 8, 2025

Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency ...
In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming ...
An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show ...
Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean ...
HydroSpread, a breakthrough fabrication method, lets scientists build ultrathin soft robots directly on water. These tiny, insect-inspired machines could transform robotics, healthcare, and environmental ...
Scientists at OIST have, for the first time, directly tracked the elusive “dark excitons” inside atomically thin materials. These quantum particles could revolutionize information technology, as they are more stable and resistant to ...
In 2020, California’s Creek Fire became so intense that it generated its own thunderstorm, a phenomenon called a pyrocumulonimbus cloud. For years, scientists struggled to replicate these explosive fire-born storms in climate models, leaving major ...
A new AI tool called DOLPHIN exposes hidden genetic markers inside single cells, enabling earlier detection and more precise treatment choices. It also sets the stage for building virtual models of cells to simulate disease and drug ...
A powerful new AI tool called Diag2Diag is revolutionizing fusion research by filling in missing plasma data with synthetic yet highly detailed information. Developed by Princeton scientists and international collaborators, this system uses sensor ...
A team of physicists has discovered that virtual charges, which exist only during brief interactions with light, play a critical role in ultrafast material responses. Using attosecond pulses on diamonds, they showed these hidden carriers ...
Diraq has shown that its silicon-based quantum chips can maintain world-class accuracy even when mass-produced in semiconductor foundries. Achieving over 99% fidelity in two-qubit operations, the breakthrough clears a major hurdle toward ...
Researchers have discovered an unusual "quantum echo" in superconducting materials, dubbed the Higgs echo. This phenomenon arises from the interplay between Higgs modes and quasiparticles, producing distinctive signals unlike conventional echoes. By ...

Latest Headlines

updated 12:56 pm ET