New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Robot

A robot is a mechanical or virtual, artificial agent. It is usually an electromechanical system, which, by its appearance or movements, conveys a sense that it has intent or agency of its own. The word robot can refer to both physical and virtual software agents, but the latter are usually referred to as bots to differentiate.

Robots can be placed into roughly two categories based on the type of job they do:

Jobs which a robot can do better than a human. Here, robots can increase productivity, accuracy, and endurance.

Jobs which a human could do better than a robot, but it is desirable to remove the human for some reason. Here, robots free us from dirty, dangerous and dull tasks.

Manipulation

Robots which must work in the real world require some way to manipulate objects; pick up, modify, destroy or otherwise have an effect. Thus the 'hands' of a robot are often referred to as end effectors, while the arm is referred to as a manipulator. Most robot arms have replacable effectors, each allowing them to perform some small range of tasks. Some have a fixed manipulator which cannot be replaced, while a few have one very general purpose manipulator, for example a humanoid hand.

Grippers: A common effector is the gripper. Usually it consists of just two fingers which can open and close to pick up and let go of a range of small objects.

Vacuum Grippers: Pick and place robots for electronic components and for large objects like car windscreens, will often use very simple vacuum grippers. These are very simple, but can hold very large loads, and pick up any object with a smooth surface to suck on to.

General purpose effectors: Some advanced robots are beginning to use fully humanoid hands, like the Shadow Hand (right), or the Schunk hand. These highly dexterous manipulators, with as many as 20 degrees of freedom and hundreds of tactile sensors can be difficult to control. The computer must consider a great deal of information, and decide on the best way to manipulate an object from many possibilities.

Locomotion

For simplicity, most mobile robots have wheels. However, some researchers have tried to create more complex wheeled robots, with only one or two wheels.

Two-wheeled balancing: While the Segway is not commonly thought of as a robot, it can be thought of as a component of a robot. Several real robots do use a similar dynamic balancing algorithm, and NASA's Robonaut has been mounted on a Segway.

Ballbot: Carnegie Mellon University researchers have developed a new type of mobile robot that balances on a ball instead of legs or wheels. "Ballbot" is a self-contained, battery-operated, omnidirectional robot that balances dynamically on a single urethane-coated metal sphere. It weighs 95 pounds and is the approximate height and width of a person. Because of its long, thin shape and ability to maneuver in tight spaces, it has the potential to function better than current robots can in environments with people.

Walking is a difficult and dynamic problem to solve. Several robots have been made which can walk reliably on two legs, however none have yet been made which are as robust as a human. Typically, these robots can walk well on flat floors, can occasionally walk up stairs. None can walk over rocky, uneven terrain.

Related Stories
 


Matter & Energy News

October 11, 2025

A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a ...
Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the ...
Scientists at EPFL have reimagined 3D printing by turning simple hydrogels into tough metals and ceramics. Their process allows multiple infusions of metal salts that form dense, high-strength structures without the porosity of earlier methods. ...
Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency ...
In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming ...
An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show ...
Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean ...
Solar energy is now the cheapest source of power worldwide, driving a massive shift toward renewables. Falling battery prices and innovations in solar materials are making clean energy more reliable than ever. Yet, grid congestion and integration ...
A Penn State research team found that streetlights could double as affordable EV charging stations. After installing 23 units in Kansas City, they discovered these chargers were faster, cheaper, and more eco-friendly than traditional stations. Their ...
Scientists at OIST have, for the first time, directly tracked the elusive “dark excitons” inside atomically thin materials. These quantum particles could revolutionize information technology, as they are more stable and resistant to ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...
A team in Sweden has unraveled the hidden structure of a promising solar material using machine learning and advanced simulations. Their findings could unlock durable, ultra-efficient solar cells for ...

Latest Headlines

updated 12:56 pm ET