New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Macromolecule

The literal definition of the term macromolecule implies large molecule. In the context of science and engineering, the term may be applied to conventional polymers and biopolymers (such as DNA) as well as non-polymeric molecules with large molecular mass such as lipids or macrocycles. However, other large networks of atoms, such as metallic covalent networks or fullerenes, are not generally described as macromolecules.

Because of their size, macromolecules are not conveniently described in terms of stoichiometry alone. The structure of simple macromolecules, such as homopolymers, may be described in terms of the individual monomer subunit and total molecular mass. Complicated biomacromolecules, on the other hand, require multi-faceted structural description such as the hierarchy of structures used to describe proteins.

Substances that are composed of macromolecules often have unusual physical properties. For example, individual pieces of DNA in solution can be broken in two simply by suctioning the solution through an ordinary straw. This is not true of smaller molecules.

Related Stories
 


Matter & Energy News

February 5, 2026

A new metasurface design lets light of different spins bend, focus, and behave independently—while staying sharp across many colors. The trick combines two geometric phase effects so each spin channel can be tuned without interfering with the ...
A new optical device allows researchers to generate and switch between two stable, donut-shaped light patterns called skyrmions. These light vortices hold their shape even when disturbed, making them promising for wireless data transmission. Using a ...
Researchers have found that manganese, an abundant and inexpensive metal, can be used to efficiently convert carbon dioxide into formate, a potential hydrogen source for fuel cells. The key was a clever redesign that made the catalyst last far ...
A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature optical cavities that efficiently collect light from individual atoms, allowing many qubits to be read at once. The team has already ...
Researchers have discovered a hidden quantum geometry inside materials that subtly steers electrons, echoing how gravity warps light in space. Once thought to exist only on paper, this effect has now been observed experimentally in a popular quantum ...
A strange, glowing form of matter called dusty plasma turns out to be incredibly sensitive to magnetic fields. Researchers found that even weak fields can change how tiny particles grow, simply by nudging electrons into new motions. In lab ...
Researchers have found a way to make ordinary aluminum tubes float indefinitely, even when submerged for long periods or punched full of holes. By engineering the metal’s surface to repel water, the tubes trap air inside and refuse to sink, even ...
Order doesn’t always form perfectly—and those imperfections can be surprisingly powerful. In materials like liquid crystals, tiny “defects” emerge when symmetry breaks, shaping everything ...
Scientists have created a device that captures carbon dioxide and transforms it into a useful chemical in a single step. The new electrode works with realistic exhaust gases rather than requiring purified CO2. It converts the captured gas into ...
Physicists have discovered that hidden magnetic order plays a key role in the pseudogap, a puzzling state of matter that appears just before certain materials become superconductors. Using an ultra-cold quantum simulator, the team found that even ...
Researchers have demonstrated that quantum entanglement can link atoms across space to improve measurement accuracy. By splitting an entangled group of atoms into separate clouds, they were able to measure electromagnetic fields more precisely than ...
Researchers have developed a technique that allows them to carve complex three dimensional nanodevices directly from single crystals. To demonstrate its power, they sculpted microscopic helices from a magnetic material and found that the structures ...

Latest Headlines

updated 12:56 pm ET