New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Antikythera mechanism

The Antikythera mechanism is an ancient mechanical analog computer (as opposed to digital computer) designed to calculate astronomical positions. It was discovered in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to about 150-100 BC. The Antikythera mechanism is one of the world's oldest known geared devices. It has puzzled and intrigued historians of science and technology since its discovery. The device uses a differential gear, previously believed to have been invented in the 16th century, and is remarkable for the level of miniaturization and complexity of its parts, which is comparable to that of 18th century clocks. It has a differential gear arrangement with over 30 gears, with teeth formed through equilateral triangles. When past or future dates were entered via a crank (now lost), the mechanism calculated the position of the Sun, Moon or other astronomical information such as the location of other planets. The use of differential gears enabled the mechanism to add or subtract angular velocities. The differential was used to compute the synodic lunar cycle by subtracting the effects of the sun's movement from those of the sidereal lunar movement. It is possible that the mechanism is based on heliocentric principles, rather than the then-dominant geocentric view espoused by Aristotle and others.

Related Stories
 


Space & Time News

January 1, 2026

As we age, our immune system quietly loses its edge, and scientists have uncovered a surprising reason why. A protein called platelet factor 4 naturally declines over time, allowing blood stem cells to multiply too freely and drift toward unhealthy, ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
Astronomers have uncovered a massive hidden planet and a rare “failed star” by combining ultra-precise space data with some of the sharpest ground-based images ever taken. Using the Subaru Telescope in Hawaiʻi, the OASIS survey tracked subtle ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers have shown that quantum signals can be sent from Earth up to satellites, not just down from space as previously believed. This breakthrough could make global quantum networks far more powerful, affordable, and ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Earth’s orbit is getting crowded with broken satellites and leftover rocket parts. Researchers say the solution is to build spacecraft that can be repaired, reused, or recycled instead of abandoned. They also want new tools to collect old debris ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
A massive solar storm in May 2024 gave scientists an unprecedented look at how Earth’s protective plasma layer collapses under intense space weather. With the Arase satellite in a perfect observing position, researchers watched the plasmasphere ...
New observations show that asteroid 1998 KY26 is a mere 11 meters across and spinning twice as fast as previously thought. The discovery adds complexity to Hayabusa2’s 2031 mission but also heightens scientific interest. The asteroid’s ...
Scientists built a tiny clock from single-electron jumps to probe the true energy cost of quantum timekeeping. They discovered that reading the clock’s output requires vastly more energy than the clock uses to function. This measurement process ...
Researchers combined deep learning with high-resolution physics to create the first Milky Way model that tracks over 100 billion stars individually. Their AI learned how gas behaves after supernovae, removing one of the biggest computational ...

Latest Headlines

updated 12:56 pm ET