New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Acoustics

Acoustics is the branch of physics concerned with the study of sound (mechanical waves in gases, liquids, and solids). A scientist who works in the field of acoustics is an acoustician. The application of acoustics in technology is called acoustical engineering. There is often much overlap and interaction between the interests of acousticians and acoustical engineers. Acoustics is the science concerned with the production, control, transmission, reception, and effects of sound. Its origins began with the study of mechanical vibrations and the radiation of these vibrations through mechanical waves, and still continues today. Research was done to look into the many aspects of the fundamental physical processes involved in waves and sound and into possible applications of these processes in modern life. The study of sound waves also lead to physical principles that can be applied to the study of all waves.

Applications of acoustic technology include music and the study of geologic, atmospheric, and underwater phenomena. Psychoacoustics, the study of the physical effects of sound on biological systems, has been of interest since Pythagoras first heard the sounds of vibrating strings and of hammers hitting anvils in the 6th century BC, but the application of modern ultrasonic technology has only recently provided some of the most exciting developments in medicine. The ear itself is another biological instrument dedicated to receiving certain wave vibrations and interpreting them as sound.

Related Stories
 


Matter & Energy News

December 9, 2025

SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Scientists have discovered how to electrically power insulating nanoparticles using organic molecules that act like tiny antennas. These hybrids generate extremely pure near-infrared light, ideal for medical diagnostics and advanced communications. ...
Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...
Researchers engineered a strained germanium layer on silicon that allows charge to move faster than in any silicon-compatible material to date. This record mobility could lead to chips that run cooler, faster, and with dramatically lower energy ...
Researchers have discovered a new way to grow graphene that deliberately adds structural defects to enhance its usefulness in electronics, sensors, catalysts, and more. Using a specially shaped molecule called azupyrene, scientists can produce ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
Engineers have unlocked a new class of supercapacitor material that could rival traditional batteries in energy while charging dramatically faster. By redesigning carbon structures into highly curved, accessible graphene networks, the team achieved ...
Quantum communication is edging closer to reality thanks to a breakthrough in teleporting information between photons from different quantum dots—one of the biggest challenges in building a quantum internet. By creating nearly identical ...
Researchers have directly observed Floquet effects in graphene for the first time, settling a long-running scientific debate. Their ultrafast light-based technique demonstrates that graphene’s ...
Researchers have discovered a low-energy way to recycle Teflon® by using mechanical motion and sodium metal. The process turns the notoriously durable plastic into sodium fluoride that can be reused directly in chemical manufacturing. This creates ...
Europe is investing in a coordinated effort to develop high-power optical vortex technologies and train new specialists in the field. The HiPOVor network unites academia and industry to advance applications ranging from material processing to ...
Scientists have directly measured the minuscule electron sharing that makes precious-metal catalysts so effective. Their new technique, IET, reveals how molecules bind and react on metal surfaces with unprecedented clarity. The insights promise ...

Latest Headlines

updated 12:56 pm ET