New! Sign up for our free email newsletter.
Science News
from research organizations

New material to make next generation of electronics faster and more efficient

With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow

Date:
November 8, 2024
Source:
University of Minnesota
Summary:
Researchers have created a new material that will be pivotal in making the next generation of high-power electronics faster, transparent and more efficient.
Share:
FULL STORY

Researchers at the University of Minnesota have achieved a new material that will be pivotal in making the next generation of high-power electronics faster, transparent and more efficient. This artificially designed material allows electrons to move faster while remaining transparent to both visible and ultraviolet light, breaking the previous record.

The research, published in Science Advances, a peer-reviewed scientific journal, marks a significant leap forward in semiconductor design, which is crucial to a trillion-dollar global industry expected to continue growing as digital technologies expand.

Semiconductors power nearly all electronics, from smartphones to medical devices. A key to advancing these technologies lies in improving what scientists refer to as "ultra-wide band gap" materials. These materials can conduct electricity efficiently even under extreme conditions. Ultra-wide band gap semiconductors enable high-performance at elevated temperatures, making them essential for more durable and robust electronics.

In this paper, the researchers looked at creating a new class of materials with increased "band gap," enhancing both transparency and conductivity. This unique achievement supports the development of faster, more efficient devices, paving the way for breakthroughs in computers, smartphones, and potentially even quantum computing.

The new material is a transparent conducting oxide, created with a specialized thin-layered structure that enhances transparency without sacrificing conductivity. As technology and artificial intelligence applications demand ever-more capable materials, this groundbreaking development offers a promising solution.

"This breakthrough is a game-changer for transparent conducting materials, enabling us to overcome limitations that have held back deep ultra-violet device performance for years," said Bharat Jalan, Shell Chair and Professor in the University of Minnesota's Department of Chemical Engineering and Materials Science.

The work not only demonstrates an unprecedented combination of transparency and conductivity in the deep-ultraviolet spectrum but also paves the way for innovations in high-power and optoelectronic devices that can operate in the most demanding environments, Jalan explained.

The study's first co-authors Fengdeng Liu and Zhifei Yang, chemical engineering and materials science Ph.D. students working in Jalan's lab, said they proved that the properties of the material were almost too perfect to believe for these electronic applications. They ran multiple experiments and eliminated defects in the material to increase its performance.

"Through detailed electron microscopy, we saw this material was clean with no obvious defects, revealing just how powerful oxide-based perovskites can be as semiconductors if defects are controlled," said Andre Mkhoyan, a senior author on the paper and Ray D. and Mary T. Johnson Chair and Professor in the University of Minnesota Department of Chemical Engineering and Materials Science.

In addition to Jalan, Liu, Yang, and Mkhoyan, the team included Silo Guo from the University of Minnesota's Department of Chemical Engineering and Materials Science and David Abramovitch and Marco Bernardi from the California Institute of Technology's Department of Applied Physics and Materials Science.


Story Source:

Materials provided by University of Minnesota. Note: Content may be edited for style and length.


Journal Reference:

  1. Fengdeng Liu, Zhifei Yang, David Abramovitch, Silu Guo, K. Andre Mkhoyan, Marco Bernardi, Bharat Jalan. Deep-ultraviolet transparent conducting SrSnO 3 via heterostructure design. Science Advances, 2024; 10 (44) DOI: 10.1126/sciadv.adq7892

Cite This Page:

University of Minnesota. "New material to make next generation of electronics faster and more efficient." ScienceDaily. ScienceDaily, 8 November 2024. <www.sciencedaily.com/releases/2024/11/241108113453.htm>.
University of Minnesota. (2024, November 8). New material to make next generation of electronics faster and more efficient. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2024/11/241108113453.htm
University of Minnesota. "New material to make next generation of electronics faster and more efficient." ScienceDaily. www.sciencedaily.com/releases/2024/11/241108113453.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES