New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Computer animation

Computer animation is the art of creating moving images via the use of computers. It is a subfield of computer graphics and animation. Increasingly it is created by means of 3D computer graphics, though 2D computer graphics are still widely used for low bandwidth and faster real-time rendering needs. Sometimes the target of the animation is the computer itself, but it sometimes the target is another medium, such as film. It is also referred to as CGI (Computer-generated imagery or computer-generated imaging), especially when used in films.

To create the illusion of movement, an image is displayed on the computer screen then quickly replaced by a new image that is similar to the previous image, but shifted slightly. This technique is identical to how the illusion of movement is achieved with television and motion pictures.

Computer animation is essentially a digital successor to the art of stop motion animation of 3D models and frame-by-frame animation of 2D illustrations. For 3D animations, objects (models) are built on the computer monitor (modeled) and 3D figures are rigged with a virtual skeleton. For 2D figure animations, separate objects (illustrations) and separate transparent layers are used, with or without a virtual skeleton. Then the limbs, eyes, mouth, clothes, etc. of the figure are moved by the animator on key frames. The differences in appearance between key frames are automatically calculated by the computer in a process known as tweening or morphing. Finally, the animation is rendered.

For 3D animations, all frames must be rendered after modeling is complete. For 2D vector animations, the rendering process is the key frame illustration process, while tweened frames are rendered as needed. For pre-recorded presentations, the rendered frames are transferred to a different format or medium such as film or digital video. The frames may also be rendered in real time as they are presented to the end-user audience. Low bandwidth animations transmitted via the internet (e.g. 2D Flash, X3D) often use software on the end-users computer to render in real time as an alternative to streaming or pre-loaded high bandwidth animations.

Related Stories
 


Computers & Math News

September 12, 2025

Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...
Like LEGO for the quantum age, researchers have created modular superconducting qubits that can be linked with high fidelity. This design allows reconfiguration, upgrades, and scalability, marking a big step toward fault-tolerant quantum ...
Artificial intelligence is reshaping law, ethics, and society at a speed that threatens fundamental human dignity. Dr. Maria Randazzo of Charles Darwin University warns that current regulation fails to protect rights such as privacy, autonomy, and ...
A hidden quantum geometry that distorts electron paths has finally been observed in real materials. This “quantum metric,” once thought purely theoretical, may revolutionize electronics, superconductivity, and ultrafast ...
Scientists in Japan have uncovered a strange new behavior in “heavy” electrons — particles that act as if they carry far more mass than usual. These electrons were found to be entangled, sharing a deep quantum link, and doing so in ways tied ...
Scientists at Mount Sinai have created an artificial intelligence system that can predict how likely rare genetic mutations are to actually cause disease. By combining machine learning with millions of electronic health records and routine lab tests ...
Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% ...
Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials ...
While superconducting qubits are great at fast calculations, they struggle to store information for long periods. A team at Caltech has now developed a clever solution: converting quantum information into sound waves. By using a tiny device that ...
Scientists using Google’s quantum processor have taken a major step toward unraveling the deepest mysteries of the universe. By simulating fundamental interactions described by gauge theories, the ...
Scientists have discovered that electron spin loss, long considered waste, can instead drive magnetization switching in spintronic devices, boosting efficiency by up to three times. The scalable, semiconductor-friendly method could accelerate the ...
Researchers cracked the mystery of altermagnets, materials with no net magnetization yet strange light-reflecting powers, by creating a new optical measurement method. Their findings confirmed altermagnetism in an organic crystal and opened doors to ...

Latest Headlines

updated 12:56 pm ET