New! Sign up for our free email newsletter.
Science News
from research organizations

Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans

Date:
September 11, 2020
Source:
Osaka City University
Summary:
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers. An international team of researchers has realized a quantum technology to probe temperature on a nanometer-scale, and have observed a 'fever' in tiny nematode worms under pharmacological treatment. This strengthens the connection between quantum sensing and biology and ushers in novel thermal imaging technologies in biomedical research.
Share:
FULL STORY

A team from Osaka City University, in collaboration with other international partners, has demonstrated a reliable and precise microscope-based thermometer that works in live, microscopic animals based on quantum technology, specifically, detecting temperature-dependent properties of quantum spins in fluorescent nanodiamonds.

The research is published in Science Advances.

The optical microscope is one of the most basic tools for analysis in biology that uses visible light to allow the naked eye to see microscopic structures. In the modern laboratory, fluorescence microscope, an enhanced version of the optical microscope with various fluorescent biomarkers, is more frequently used. Recent advancements in such fluorescence microscopy have allowed for live imaging of the details of a structure, and through this, obtaining various physiological parameters in these structures, such as pH, reactive oxygen species, and temperature.

Quantum sensing is a technology that exploits the ultimate sensitivity of fragile quantum systems to the surrounding environment. High-contrast MRIs are examples of quantum spins in fluorescent diamonds and are some of the most advanced quantum systems working at the forefront of real-world applications. Applications of this technique to thermal biology were introduced seven years ago to quantify temperatures inside cultured cells. However, they had yet to be applied to dynamic biological systems where heat and temperature are more actively involved in biological processes.

The research team decorated the surface of the nanodiamonds with polymer structures and injected them to C. elegans nematode worms, one of the most popular model animals in biology. They needed to know the base "healthy" temperature of the worms. Once inside, the nanodiamonds moved quickly but the team's novel quantum thermometry algorithm successfully tracked them and steadily measured the temperature. A fever was induced within the worms by stimulating their mitochondria with a pharmacological treatment. The team's quantum thermometer successfully observed a temperature increase in the worms.

"It was fascinating to see quantum technology work so well in live animals and I never imagined the temperature of tiny worms less than 1 mm in size could deviate from the norm and develop into a fever," said Masazumi Fujiwara, a lecturer at the Department of Science at Osaka City University. "Our results are an important milestone that will guide the future direction of quantum sensing as it shows how it contributes to biology,"


Story Source:

Materials provided by Osaka City University. Note: Content may be edited for style and length.


Journal Reference:

  1. Masazumi Fujiwara, Simo Sun, Alexander Dohms, Yushi Nishimura, Ken Suto, Yuka Takezawa, Keisuke Oshimi, Li Zhao, Nikola Sadzak, Yumi Umehara, Yoshio Teki, Naoki Komatsu, Oliver Benson, Yutaka Shikano, and Eriko Kage-Nakadai. Real-time nanodiamond thermometry probing in vivo thermogenic responses. Science Advances, 2020 DOI: 10.1126/sciadv.aba9636

Cite This Page:

Osaka City University. "Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans." ScienceDaily. ScienceDaily, 11 September 2020. <www.sciencedaily.com/releases/2020/09/200911141739.htm>.
Osaka City University. (2020, September 11). Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2020/09/200911141739.htm
Osaka City University. "Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans." ScienceDaily. www.sciencedaily.com/releases/2020/09/200911141739.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES