New! Sign up for our free email newsletter.
Science News
from research organizations

Speeding up data storage by a thousand times with 'spin current'

Date:
July 10, 2014
Source:
Eindhoven University of Technology
Summary:
A hard drive stores bits in the form of tiny magnetic domains. The directions of the magnetic north and south poles of these domains, which are referred to as the magnetization, determine whether they are a 0 or a 1. Data is stored by changing the direction of the magnetization of the associated bits. At present this is done using a write head to create a local magnetic field, which makes a bit change direction.
Share:
FULL STORY

A hard drive stores bits in the form of tiny magnetic domains. The directions of the magnetic north and south poles of these domains, which are referred to as the magnetization, determine whether they are a 0 or a 1. Data is stored by changing the direction of the magnetization of the associated bits. At present this is done using a write head to create a local magnetic field, which makes a bit change direction.

Limit reached

The stronger the local magnetic field, the faster the switch takes place. But this is subject to a limit which has now almost been reached. "The number of bits has been growing rapidly for many years, but the write speed has hardly increased. There's a need for a new data storage technology," says TU/e researcher Sjors Schellekens. He is the lead author of a publication in Nature Communications, in which together with colleagues he presents a new technology.

Magnetic stream

The physicists, led by TU/e professor prof.dr. Bert Koopmans, use a special property of electrons, the spin -- a kind of internal compass in the electron. Using ultra-fast laser pulses they generate a flow of electrons in a material which all have the same spin. The resulting 'spin current' changes the magnetic properties of the material.

A thousand times faster

"The change in the magnetization is of the order of 100 femtoseconds, which is a factor 1,000 faster than what is possible with today's technology," says Schellekens. As well as that, the researchers were able to describe the physical processes that are involved in detail. "There was discussion among physicists about whether the generated spin current is actually able to cause the change in magnetization. We now definitely show that this is really the case," says Schellekens.

Optical computer chips

In addition, the method is a step towards future optical computer chips, which TU/e is now working on. In December the university received a Dutch grant of almost 20 million euros to integrate photonics in computer systems. "Our technology allows optical data to be stored in the form of magnetic bits. That offers unprecedented opportunities if you want to use light as information carrier," says Schellekens.


Story Source:

Materials provided by Eindhoven University of Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. A. J. Schellekens, K. C. Kuiper, R.R.J.C. de Wit, B Koopmans. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5333

Cite This Page:

Eindhoven University of Technology. "Speeding up data storage by a thousand times with 'spin current'." ScienceDaily. ScienceDaily, 10 July 2014. <www.sciencedaily.com/releases/2014/07/140710081206.htm>.
Eindhoven University of Technology. (2014, July 10). Speeding up data storage by a thousand times with 'spin current'. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2014/07/140710081206.htm
Eindhoven University of Technology. "Speeding up data storage by a thousand times with 'spin current'." ScienceDaily. www.sciencedaily.com/releases/2014/07/140710081206.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES