New! Sign up for our free email newsletter.
Science News
from research organizations

New graphene-based electronics could take a page out of the silicon electronics book

Date:
June 2, 2010
Source:
American Physical Society
Summary:
A dopant common in building conventional electronics looks promising for making components out of carbon sheets only one atom thick.
Share:
FULL STORY

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Plank Institute for Metals Research in Stuttgart report the advance in a paper appearing online in the journal Physical Review B on June 1.

Ultrathin carbon layers known as graphene show promise as the basis for a host of extremely small and efficient electronic devices. But in order to create a useful component, the electronic properties of materials like silicon or graphene must be tailored through a doping process. Typically, silicon-based devices are doped by replacing some of the atoms in a silicon crystal with various dopant atoms or molecules . In graphene, on the other hand, dopants are generally deposited on top of the carbon sheet rather than taking the place of some of the carbon atoms.

Materials such as gold, bismuth and nitrogen dioxide have been used to dope graphene with varying degrees of success. Now, Max Planck Institute researchers have found that the compound F4-TCNQ (tetrafluoro-tetracyanoquinodimethane), which has been proven effective for producing LEDs in silicon, seems to fit the bill for graphene as well. F4-TCNQ forms stable layers on graphene that are fairly robust under exposure to elevated levels of heat and light, and can control graphene electrical properties in ways that suggest it may be a good dopant choice.

In a Viewpoint article in the current issue of APS Physics, Alexei Fedorov of the Lawrence Berkeley National Laboratory describes the challenges of creating electronic devices built of graphene and recent attempts to identify doping materials to do the job.


Story Source:

Materials provided by American Physical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J. H. Smet, and U. Starke. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B, 81, 235401 (2010) DOI: 10.1103/PhysRevB.81.235401

Cite This Page:

American Physical Society. "New graphene-based electronics could take a page out of the silicon electronics book." ScienceDaily. ScienceDaily, 2 June 2010. <www.sciencedaily.com/releases/2010/06/100601114635.htm>.
American Physical Society. (2010, June 2). New graphene-based electronics could take a page out of the silicon electronics book. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2010/06/100601114635.htm
American Physical Society. "New graphene-based electronics could take a page out of the silicon electronics book." ScienceDaily. www.sciencedaily.com/releases/2010/06/100601114635.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES