New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Tire

A tire or tyre is a device covering the circumference of a wheel. It is an essential part of most ground vehicles and is used to dampen the oscillations caused by irregularities in the road surface, to protect the wheel from wear and tear as well as to provide a high-friction bond between the vehicle and the ground to improve acceleration and handling. Today most tires, especially those fitted to motor vehicles, are manufactured from synthetic rubber, but other materials such as steel may be used. The grooves or treads found in most tires are there to improve contact between the tire and the road in wet conditions. Without such grooves, the water on the surface of the road would be unable to escape out to the sides of the wheel as the tire presses down onto the road. This causes a thin layer of water to remain between the road and the tire's surface, which causes a severe loss of grip. At higher speeds, this can cause hydroplaning, substantially reducing traction during braking, cornering and hard acceleration. The grooves in the tread provide an escape path for the water - and it is even claimed by some tire manufacturers that their tread pattern is designed to actively pump water out from under the tire by the action of the tread flexing.

Related Stories
 


Matter & Energy News

August 24, 2025

Ripple bugs’ fan-like legs inspired engineers to build the Rhagobot, a tiny robot with self-morphing fans. By mimicking these insects’ passive, ultra-fast movements, the robot gains speed, control, and endurance without extra ...
Scientists have developed a groundbreaking cryo-optical microscopy technique that freezes living cells mid-action, capturing ultra-detailed snapshots of fast biological processes. By rapidly immobilizing cells at precise moments, researchers can ...
By using quantum dots and smart encryption protocols, researchers overcame a 40-year barrier in quantum communication, showing that secure networks don’t need perfect hardware to outperform today’s best ...
Researchers at Zhejiang University have found a way to stop performance-killing Auger recombination in perovskite lasers, using a clever additive during processing. Their method produced a record-breaking laser with unprecedented efficiency, ...
Scientists may have uncovered the missing piece of quantum computing by reviving a particle once dismissed as useless. This particle, called the neglecton, could give fragile quantum systems the full power they need by working alongside Ising ...
Researchers developed a crystal that inhales and exhales oxygen like lungs. It stays stable under real-world conditions and can be reused many times, making it ideal for energy and electronic applications. This innovation could reshape technologies ...
Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic ...
Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit ...
Rice University scientists have discovered a way to make tiny vibrations, called phonons, interfere with each other more strongly than ever before. Using a special sandwich of silver, graphene, and silicon carbide, they created a record-breaking ...
Researchers have found a clever way to make quantum dots, tiny light-emitting crystals, produce streams of perfectly controlled photons without relying on expensive, complex electronics. By using a precise sequence of laser pulses, the team can ...
Scientists have developed a lightning-fast AI tool called HEAT-ML that can spot hidden “safe zones” inside a fusion reactor where parts are protected from blistering plasma heat. Finding these areas, known as magnetic shadows, is key to keeping ...
Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and ...

Latest Headlines

updated 12:56 pm ET