New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Radiant energy

Radiant energy is the energy of electromagnetic waves. The term is most commonly used in the fields of radiometry, solar energy, heating and lighting, but is also used less frequently in other fields (such as telecommunications). The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time and, like all forms of energy, its SI unit is the joule. In applications involving transmission of power from one location to another, "radiant energy" is sometimes used to refer to the electromagnetic waves themselves, rather than their energy (a property of the waves). Because electromagnetic (EM) radiation can be considered to be a stream of photons, radiant energy can be viewed as the energy carried by these photons. Alternatively, EM radiation can be viewed as an electromagnetic wave, which carries energy in its oscillating electric and magnetic fields. These two views are completely equivalent, and are reconciled to one another in quantum field theory.

Related Stories
 


Earth & Climate News

August 24, 2025

A new study reveals that the majority of Earth’s species stem from a few evolutionary explosions, where new traits or habitats sparked rapid diversification. From flowers to birds, these bursts explain most of the planet’s ...
As the ozone layer recovers, it’s also intensifying global warming. Researchers predict that by 2050, ozone will rank just behind carbon dioxide as a driver of heating, offsetting many of the benefits from banning ...
Industrial forests, packed with evenly spaced trees, face nearly 50% higher odds of megafires than public lands. A lidar-powered study of California’s Sierra Nevada reveals how dense plantations feed fire severity, but also shows that proactive ...
Planting more trees can help cool the planet and reduce fire risk—but where they are planted matters. According to UC Riverside researchers, tropical regions provide the most powerful climate benefits because trees there grow year-round, absorb ...
Kelp forests bounce back faster from marine heatwaves when shielded inside Marine Protected Areas. UCLA researchers found that fishing restrictions and predator protection strengthen ecosystem resilience, though results vary by ...
Scientists found that Great Salt Lake’s chemistry and water balance were stable for thousands of years, until human settlement. Irrigation and farming in the 1800s and a railroad causeway in 1959 ...
NASA-backed simulations reveal that meltwater from Greenland’s Jakobshavn Glacier lifts deep-ocean nutrients to the surface, sparking large summer blooms of phytoplankton that feed the Arctic food ...
NASA and ISRO s NISAR satellite has just reached a major milestone: the successful deployment of its enormous 39-foot antenna reflector in orbit. Folded up like an umbrella during launch, the reflector is now fully extended and ready to support ...
With its two tiny CubeSats, NASA’s PREFIRE mission is capturing invisible heat escaping from Earth, offering clues to how ice, clouds, and storms influence the climate system. The insights could lead to better weather forecasts and a deeper ...
Roughly two-thirds of all atmospheric methane, a potent greenhouse gas, comes from methanogens. Tracking down which methanogens in which environment produce methane with a specific isotope signature is difficult, however. UC Berkeley researchers ...
Rising CO₂ levels will make the upper atmosphere colder and thinner, altering how geomagnetic storms impact satellites. Future storms could cause sharper density spikes despite lower overall density, increasing drag-related ...
When a massive 8.8 magnitude earthquake struck off Russia’s Kamchatka Peninsula, NASA and CNES’s SWOT satellite captured a rare and detailed picture of the tsunami that followed. Recorded just ...

Latest Headlines

updated 12:56 pm ET