New! Sign up for our free email newsletter.
Science News
from research organizations

Novel titanium dioxide catalyst support for electrocatalytic carbon dioxide reduction

Date:
September 5, 2023
Source:
Tokyo University of Science
Summary:
Carbon dioxide can be electrocatalytically reduced to useful resources using conventional catalysts such as gold or lead supported on conductive carbon. However, the high pH environment near electrodes often degrades the catalyst support, rendering them ineffective. Now, researchers have developed novel in-liquid plasma-treated titanium dioxide electrode decorated with silver nanoparticles as an alternate catalyst support, facilitating enhanced conversion of carbon dioxide to useful products, such as syngas, a clean alternative to fossil fuels.
Share:
FULL STORY

The conversion of atmospheric carbon dioxide (CO2), a greenhouse gas, to useful resources such as carbon monoxide, formic acid, and methanol and their byproducts is considered a promising route to mitigating global warming as well as generating economic value. One approach to CO2 conversion is through electrocatalytic reduction. This process utilizes conventional catalysts, such as lead, silver, tin, copper, gold etc. supported on conductive carbon as electrode material for selectively CO2 reduction. However, the electrode is often exposed to a high pH environment of the electrolyte during electrocatalysis, which can degrade the catalyst support and is a cause of major concern.

To address this challenge, a team of researchers, led by Mr. Kai Takagi and Prof. Chiaki Terashima from Graduate School of Science and Technology and Research Institute for Science and Technology at Tokyo University of Science (TUS) in Japan, has recently developed a catalyst support based on titanium dioxide (TiO2) powder, a compound commonly used in sunscreen, paints, coatings, toothpaste, plastics, paper, pharmaceuticals, and food coloring, as an alternative to carbon for facilitating effective CO2 reduction. Their work was made available online on 4 August 2023 and published in Volume 902 of the journal Science of the Total Environment on 1 December 2023.

The researchers first carried out surface treatment using safe and inexpensive in-liquid plasma to improve the electrochemical properties of TiO2. "The in-liquid plasma-treated TiO2 maintained its particle shape and crystal structure. Additionally, elemental analysis and evaluation of the interfacial bonding state and electrochemical properties of TiO2 revealed that the redox peaks corresponding to Ti4+ and Ti3+ derived from TiO2 disappeared and the hydrogen overvoltage decreased," highlights Prof. Terashima.These observations led the team to conclude that tungsten coating or doping occurred on some portions of the reduced TiO2 surface.

The researchers then used the TiO2 as a carrier and loaded it with silver nanoparticles (AgNPs), which act as catalysts, to develop a gas diffusion electrode for CO2 reduction. While untreated TiO2 exhibited high selectivity for CO2 and carbon black, in-liquid plasma-treated TiO2 with 40 wt% AgNP loading demonstrated increased hydrogen production and enhanced catalytic performance. Given that a suitable ratio of hydrogen to carbon monoxide is important for effective CO2 reduction, the presented technology, thus, has tremendous potential for converting CO2 to useful byproducts, such as syngas, which is considered a clean fuel with very high industrial value.

Additionally, the electrocatalytic reduction of CO2 can be integrated with renewable energy sources, such as solar panels or wind power, for sustainable and environmentally friendly CO2 conversion. Therefore, this work is a significant step towards efficiently tackling greenhouse gas emissions and fighting climate change.

"Hopefully, the present study will promote research on technologies for carbon neutrality and carbon recycling, in alignment with the United Nations Sustainable Development Goals 7, 12, and 13 on affordable and clean energy, responsible consumption and production, and climate action, respectively. These, in turn, will open doors to the realization of a carbon-neutral and sustainable future," concludes Prof. Terashima.


Story Source:

Materials provided by Tokyo University of Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Kai Takagi, Norihiro Suzuki, Yuvaraj M. Hunge, Haruo Kuriyama, Takenori Hayakawa, Izumi Serizawa, Chiaki Terashima. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO2 reduction application. Science of The Total Environment, 2023; 902: 166018 DOI: 10.1016/j.scitotenv.2023.166018

Cite This Page:

Tokyo University of Science. "Novel titanium dioxide catalyst support for electrocatalytic carbon dioxide reduction." ScienceDaily. ScienceDaily, 5 September 2023. <www.sciencedaily.com/releases/2023/09/230905124940.htm>.
Tokyo University of Science. (2023, September 5). Novel titanium dioxide catalyst support for electrocatalytic carbon dioxide reduction. ScienceDaily. Retrieved December 20, 2024 from www.sciencedaily.com/releases/2023/09/230905124940.htm
Tokyo University of Science. "Novel titanium dioxide catalyst support for electrocatalytic carbon dioxide reduction." ScienceDaily. www.sciencedaily.com/releases/2023/09/230905124940.htm (accessed December 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES