New! Sign up for our free email newsletter.
Science News
from research organizations

Development of an easy-to-synthesize self-healing gel composed of entangled ultrahigh molecular weight polymers

Circular-economy-friendly gel may be used in durable flexible devices

Date:
November 17, 2022
Source:
National Institute for Materials Science, Japan
Summary:
A research team has developed a method for easily synthesizing a self-healing polymer gel made of ultrahigh molecular weight polymers (polymers with a molecular weight greater than 106 g/mol) and non-volatile ionic liquids. This recyclable and self-healable polymer gel is compatible with circular economy principles. In addition, it may potentially be used as a durable, ionically conductive material for flexible IoT devices.
Share:
FULL STORY

A research team consisting of NIMS, Hokkaido University and Yamaguchi University has developed a method for easily synthesizing a self-healing polymer gel made of ultrahigh molecular weight (UHMW) polymers (polymers with a molecular weight greater than 106 g/mol) and non-volatile ionic liquids. This recyclable and self-healable polymer gel is compatible with circular economy principles. In addition, it may potentially be used as a durable, ionically conductive material for flexible IoT devices.

Self-healing polymeric materials are capable of spontaneously repairing damaged areas, thereby increasing their material lifetimes, thus being expected to promote a circular economy. Most reported self-healing polymeric materials in recent years has taken a chemical approach, in which functional groups capable of reversible dissociation and reformation (e.g., hydrogen bonding) were integrated into polymeric networks. However, this approach often requires precise synthetic techniques and complex manufacturing processes. On the other hand, an alternative physical approach (i.e., the use of physical entanglement of polymer chains) to synthesizing versatile polymeric materials with self-healing capabilities had rarely been explored.

This research team recently developed a technique for easily synthesizing UHMW gels composed of entangled UHMW polymers using ionic liquids. The mechanical properties of UHMW gels were found to be superior to those of conventional, chemically crosslinked gels. In addition, they can be recycled via thermal processing, and exhibit high self-healing capabilities at room temperature.

The use of the newly developed recyclable, self-healing, easy-to-synthesize UHMW gel material is expected to promote a circular economy. In addition, because this material is synthesized using non-volatile, flammable ionic liquids, it may be used as a safe, ionically conductive soft material in flexible electronics.


Story Source:

Materials provided by National Institute for Materials Science, Japan. Note: Content may be edited for style and length.


Journal Reference:

  1. Yuji Kamiyama, Ryota Tamate, Takashi Hiroi, Sadaki Samitsu, Kenta Fujii, Takeshi Ueki. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Science Advances, 2022; 8 (42) DOI: 10.1126/sciadv.add0226

Cite This Page:

National Institute for Materials Science, Japan. "Development of an easy-to-synthesize self-healing gel composed of entangled ultrahigh molecular weight polymers." ScienceDaily. ScienceDaily, 17 November 2022. <www.sciencedaily.com/releases/2022/11/221117141646.htm>.
National Institute for Materials Science, Japan. (2022, November 17). Development of an easy-to-synthesize self-healing gel composed of entangled ultrahigh molecular weight polymers. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2022/11/221117141646.htm
National Institute for Materials Science, Japan. "Development of an easy-to-synthesize self-healing gel composed of entangled ultrahigh molecular weight polymers." ScienceDaily. www.sciencedaily.com/releases/2022/11/221117141646.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES