New! Sign up for our free email newsletter.
Science News
from research organizations

Tracking firefighters in burning buildings

Researchers create fireproof, self powered sensor

Date:
March 1, 2019
Source:
McMaster University
Summary:
Researchers have created a motion-powered, fireproof sensor that can track the movements of firefighters, steelworkers, miners and others who work in high-risk environments where they cannot always be seen.
Share:
FULL STORY

McMaster researchers, working with partners at other universities, have created a motion-powered, fireproof sensor that can track the movements of firefighters, steelworkers, miners and others who work in high-risk environments where they cannot always be seen.

The low-cost sensor is about the size of a button-cell watch battery and can easily be incorporated into the sole of a boot or under the arm of a jacket -- wherever motion creates a pattern of constant contact and release to generate the power the sensor needs to operate.

The sensor uses triboelectric, or friction-generated, charging, harvesting electricity from movement in much the same way that a person in socks picks up static electricity walking across a carpet.

The sensor can track the movement and location of a person in a burning building, a mineshaft or other hazardous environment, alerting someone outside if the movement ceases.

The key material in the sensor, a new carbon aerogel nanocomposite, is fireproof, and the device never needs charging from a power source.

"If somebody is unconscious and you are unable to find them, this could be very useful," says Ravi Selvaganapathy, a professor of mechanical engineering who oversaw the project. "The nice thing is that because it is self-powered, you don't have to do anything. It scavenges power from the environment."

The research team -- from McMaster, UCLA and University of Chemistry and Technology Prague -- describes the new sensor in a paper published today in the journal Nano Energy.

The researchers explain that previously developed self-powered sensors have allowed similar tracking, but their materials break down at high temperatures, rendering them useless,

A self-powered sensor is necessary in extreme heat because most batteries also break down in high temperatures. The researchers have successfully tested the new technology at temperatures up to 300C -- the temperature where most types of wood start to burn -- without any loss of function.

"It's exciting to develop something that could save someone's life in the future," said co-author Islam Hassan, a McMaster PhD student in mechanical engineering. If firefighters use our technology and we can save someone's life, that would be great."

The researchers hope to work with a commercial partner to get the technology to market.


Story Source:

Materials provided by McMaster University. Note: Content may be edited for style and length.


Journal Reference:

  1. Abdelsalam Ahmed, Maher F. El-Kady, Islam Hassan, Ayman Negm, Amir Masoud Pourrahimi, Mit Muni, Ponnambalam Ravi Selvaganapathy, Richard B. Kaner. Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy, 2019; 59: 336 DOI: 10.1016/j.nanoen.2019.02.026

Cite This Page:

McMaster University. "Tracking firefighters in burning buildings." ScienceDaily. ScienceDaily, 1 March 2019. <www.sciencedaily.com/releases/2019/03/190301123237.htm>.
McMaster University. (2019, March 1). Tracking firefighters in burning buildings. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2019/03/190301123237.htm
McMaster University. "Tracking firefighters in burning buildings." ScienceDaily. www.sciencedaily.com/releases/2019/03/190301123237.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES