New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Antibiotic resistance

Antibiotic resistance is the ability of a microorganism to withstand the effects of an antibiotic. It is a specific type of drug resistance. Antibiotic resistance evolves naturally via natural selection through random mutation, but it could also be engineered by applying an evolutionary stress on a population. Once such a gene is generated, bacteria can then transfer the genetic information in a horizontal fashion (between individuals) by plasmid exchange. If a bacterium carries several resistance genes, it is called multiresistant or, informally, a superbug.

Causes

Antibiotic resistance can also be introduced artificially into a microorganism through transformation protocols. This can be a useful way of implanting artificial genes into the microorganism.

Antibiotic resistance is a consequence of evolution via natural selection. The antibiotic action is an environmental pressure; those bacteria which have a mutation allowing them to survive will live on to reproduce. They will then pass this trait to their offspring, which will be a fully resistant generation. Several studies have demonstrated that patterns of antibiotic usage greatly affect the number of resistant organisms which develop.

Overuse of broad-spectrum antibiotics, such as second- and third-generation cephalosporins, greatly hastens the development of methicillin resistance. Other factors contributing towards resistance include incorrect diagnosis, unnecessary prescriptions, improper use of antibiotics by patients, and the use of antibiotics as livestock food additives for growth promotion.

Researchers have recently demonstrated the bacterial protein LexA may play a key role in the acquisition of bacterial mutations.

Resistant pathogens

Staphylococcus aureus (colloquially known as "Staph aureus" or a Staph infection) is one of the major resistant pathogens. Found on the mucous membranes and the skin of around a third of the population, it is extremely adaptable to antibiotic pressure. It was the first bacterium in which penicillin resistance was found—in 1947, just four years after the drug started being mass-produced. Methicillin was then the antibiotic of choice, but has since been replaced by oxacillin due to significant kidney toxicity. MRSA (methicillin-resistant Staphylococcus aureus) was first detected in Britain in 1961 and is now "quite common" in hospitals. MRSA was responsible for 37% of fatal cases of blood poisoning in the UK in 1999, up from 4% in 1991. Half of all S. aureus infections in the US are resistant to penicillin, methicillin, tetracycline and erythromycin.

This left vancomycin as the only effective agent available at the time. However, strains with intermediate (4-8 ug/ml) levels of resistence, termed GISA (glycopeptide intermediate Staphylococcus aureus) or VISA (vancomycin intermediate Staphylococcus aureus), began appearing the the late 1990s. The first identified case was in Japan in 1996, and strains have since been found in hospitals in England, France and the US. The first documented strain with complete (>16ug/ml) resistence to vancomycin, termed VRSA (Vancomycin-resistant Staphylococcus aureus) appeared in the United States in 2002.

A new class of antibiotics, oxazolidinones, became available in the 1990s, and the first commercially available oxazolidinone, linezolid, is comparable to vancomycin in effectiveness against MRSA. Linezolid-resistance in Staphylococcus aureus was reported in 2003.

CA-MRSA (Community-acquired MRSA) has now emerged as an epidemic that is responsible for rapidly progressive, fatal diseases including necrotizing pneumonia, severe sepsis and necrotizing fasciitis. Methicillin-resistant Staphylococcus aureus (MRSA) is the most frequently identified antimicrobial drug-resistant pathogen in US hospitals. The epidemiology of infections caused by MRSA is rapidly changing. In the past 10 years, infections caused by this organism have emerged in the community. The 2 MRSA clones in the United States most closely associated with community outbreaks, USA400 (MW2 strain, ST1 lineage) and USA300, often contain Panton-Valentine leukocidin (PVL) genes and, more frequently, have been associated with skin and soft tissue infections. Outbreaks of community-associated (CA)-MRSA infections have been reported in correctional facilities, among athletic teams, among military recruits, in newborn nurseries, and among active homosexual men. CA-MRSA infections now appear to be endemic in many urban regions and cause most CA-S. aureus infections.

Enterococcus faecium is another superbug found in hospitals. Penicillin-Resistant Enterococcus was seen in 1983, Vancomycin-Resistant Enterococcus (VRE) in 1987, and Linezolid-Resistant Enterococcus (LRE) in the late 1990s.

Streptococcus pyogenes (Group A Streptococcus: GAS) infections can usually be treated with many different antibiotics. Early treatment may reduce the risk of death from invasive group A streptococcal disease. However, even the best medical care does not prevent death in every case. For those with very severe illness, supportive care in an intensive care unit may be needed. For persons with necrotizing fasciitis, surgery often is needed to remove damaged tissue. Strains of S. pyogenes resistant to macrolide antibiotics have emerged, however all strains remain uniformly sensitive to penicillin.

Resistance of Streptococcus pneumoniae to penicillin and other beta-lactams is increasing worldwide. The major mechanism of resistance involves the introduction of mutations in genes encoding penicillin-binding proteins. Selective pressure is thought to play an important role, and use of beta-lactam antibiotics has been implicated as a risk factor for infection and colonization. Streptococcus pneumoniae is responsible for pneumonia, bacteremia, otitis media, meningitis, sinusitis, peritonitis and arthritis.

Related Stories
 


Health & Medicine News

September 26, 2025

Cambridge scientists have created a breakthrough material that can sense tiny chemical changes in the body, such as the increased acidity during an arthritis flare-up, and release drugs exactly when and where they’re needed. By mimicking cartilage ...
Mangos, often dismissed as too sugary, may hold hidden benefits for those at risk of diabetes. A George Mason University study found that daily mango eaters showed better blood sugar control and less body fat than those eating a lower-sugar snack. ...
New studies show that a bacterial molecule, peptidoglycan, is present in the brain and fluctuates with sleep patterns. This challenges the idea that sleep is solely brain-driven, instead suggesting it’s a collaborative process between our bodies ...
For decades, scientists believed Alzheimer’s was driven mainly by sticky protein plaques and tangles in the brain. Now Purdue researchers have revealed a hidden culprit: fat. They found that brain immune cells can become clogged with fat, leaving ...
A massive international study has shown that the experimental oral obesity drug orforglipron can help patients shed over 10% of their body weight, with nearly one in five losing 20% or more. Unlike most GLP-1 agonists that require injections, ...
A new wearable device, a-Heal, combines AI, imaging, and bioelectronics to speed up wound recovery. It continuously monitors wounds, diagnoses healing stages, and applies personalized treatments like medicine or electric fields. Preclinical tests ...
Rice, a staple for billions, is one of the most resource-hungry crops on the planet—but scientists may have found a way to change that. By applying nanoscale selenium directly to rice plants, researchers dramatically improved nitrogen efficiency, ...
Researchers reviewing 46 studies found evidence linking prenatal acetaminophen (Tylenol) exposure with higher risks of autism and ADHD. The FDA has since urged caution, echoing scientists’ advice ...
AI-powered analysis of routine blood tests can reveal hidden patterns that predict recovery and survival after spinal cord injuries. This breakthrough could make life-saving predictions affordable and accessible in hospitals ...
Not drinking enough water could intensify stress responses. Researchers found that under-hydrated individuals had cortisol levels more than 50% higher during stressful situations. Poor hydration didn’t make participants feel thirstier, but it did ...
Meditation apps are revolutionizing mental health, providing easy access to mindfulness practices and new opportunities for scientific research. With the help of wearables and AI, these tools can now deliver personalized training tailored to ...
Researchers found that pancreatic pre-cancer cells mimic dementia by forming clumps of proteins due to faulty recycling processes. These insights could shed light on why pancreatic cancer develops so aggressively and why it is difficult to treat. By ...

Latest Headlines

updated 12:56 pm ET