New! Sign up for our free email newsletter.
Science News
from research organizations

How some battery materials expand without cracking

Brittle electrodes handle expansion by going glassy, study shows

Date:
April 12, 2017
Source:
Massachusetts Institute of Technology
Summary:
New findings show some phosphate-based battery materials can change from crystalline to glassy while in use, possibly opening new avenues for design of batteries.
Share:
FULL STORY

When you charge a battery, or when you use it, it's not just electricity but also matter that moves around inside. Ions, which are atoms or molecules that have an electric charge, travel from one of the battery's electrodes to the other, making the electrodes shrink and swell. In fact, it's been a longstanding mystery why fairly brittle electrode materials don't crack under the strain of these expansion and contraction cycles.

The answer may have finally been found. A team of researchers at MIT, the University of Southern Denmark, Rice University, and Argonne National Laboratory has determined that the secret is in the electrodes' molecular structure. While the electrode materials are normally crystalline, with all their atoms neatly arranged in a regular, repetitive array, when they undergo the charging or discharging process, they are transformed into a disordered, glass-like phase that can accommodate the strain of the dimensional changes.

The new findings, which could affect future battery design and even lead to new kinds of actuators, are reported in the journal Nano Letters, in a paper by MIT professor of materials science and engineering Yet-Ming Chiang, graduate students Kai Xiang and Wenting Xing, and eight others.

In theory, if you were to stretch out a lithium-ion battery over a fulcrum, with an electrode on each side, Chiang says, "it would go up and down like a seesaw" as it was being charged and discharged. The change in mass as ions shuttle back and forth is also accompanied by an expansion or contraction that can vary, depending on the material, "from 1 percent or so, all the way up to silicon, which can expand by 300 percent," he says.

This research dealt with a different kind of battery, called a sodium-ion battery. The scientists looked at a particular class of materials seen as potential battery cathodes (positive electrodes), called phospho-olivines, and specifically at sodium-iron-phosphate (NaFePO4). They found that it is possible to fine-tune the volume changes over a very wide range -- changing not only how much the material expands and contracts, but also the dynamics of how it does so. For some compositions, the expansion is very slow and gradual, but for others it can increase suddenly.

"Within this family of olivines," Chiang says, "we can have this slow, stepwise change," spanning the whole range from almost zero charge to very high power. Alternatively, the change can be "something very drastic," as is the case with NaFePO4, which rapidly changes its volume by about 17 percent.

"We know that brittle compounds like this would normally fracture with less than a 1 percent volume change," Chiang says. "So how does this material accommodate such large volume changes? What we found, in a sense, is that the crystal gives up and forms a disordered glass" instead of maintaining its precisely ordered lattice.

"This is a mechanism that we think might apply more broadly to other compounds of this kind," he says, adding that the finding may represent "a new way to create glassy materials that may be useful for batteries." Once the change to a glassy composition takes place, its volume changes become gradual rather than sudden, and as a result "it may be longer-lived," Chiang says.

The findings could provide a new design tool for those trying to develop longer-lived, higher-capacity batteries, he says. It could also lead to possible applications in which the volume changes could be put to use, for example as robotic actuators or as pumps to deliver drugs from implantable devices.

The team plans to continue working on easier ways of synthesizing these olivine compounds, and determining whether there is a broader family of crystalline materials that shares this phase-changing property.


Story Source:

Materials provided by Massachusetts Institute of Technology. Original written by David L. Chandler. Note: Content may be edited for style and length.


Journal Reference:

  1. Kai Xiang, Wenting Xing, Dorthe B. Ravnsbæk, Liang Hong, Ming Tang, Zheng Li, Kamila M. Wiaderek, Olaf J. Borkiewicz, Karena W. Chapman, Peter J. Chupas, Yet-Ming Chiang. Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4. Nano Letters, 2017; 17 (3): 1696 DOI: 10.1021/acs.nanolett.6b04971

Cite This Page:

Massachusetts Institute of Technology. "How some battery materials expand without cracking." ScienceDaily. ScienceDaily, 12 April 2017. <www.sciencedaily.com/releases/2017/04/170412105830.htm>.
Massachusetts Institute of Technology. (2017, April 12). How some battery materials expand without cracking. ScienceDaily. Retrieved January 11, 2025 from www.sciencedaily.com/releases/2017/04/170412105830.htm
Massachusetts Institute of Technology. "How some battery materials expand without cracking." ScienceDaily. www.sciencedaily.com/releases/2017/04/170412105830.htm (accessed January 11, 2025).

Explore More

from ScienceDaily

RELATED STORIES