New! Sign up for our free email newsletter.
Science News
from research organizations

Clumped galaxies give General Relativity its toughest test yet

Date:
June 24, 2014
Source:
Royal Astronomical Society (RAS)
Summary:
Nearly 100 years since Albert Einstein developed General Relativity, the theory has passed its toughest test yet in explaining the properties of observable Universe.  The most precise measurements to date of the strength of gravitational interactions between distant galaxies show perfect consistency with General Relativity’s predictions.
Share:
FULL STORY

Nearly 100 years since Albert Einstein developed General Relativity, the theory has passed its toughest test yet in explaining the properties of observable Universe. The most precise measurements to date of the strength of gravitational interactions between distant galaxies show perfect consistency with General Relativity's predictions. The results will be presented by Dr Lado Samushia at the National Astronomy Meeting 2014 in Portsmouth on Wednesday 25 June.

Samushia and his colleagues analysed more than 600,000 galaxies from the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillations Spectroscopic Survey (BOSS) catalogue to come up with a measurement of how much galaxies clump together within the vast volume that they occupy.

"Whilst the Cosmological Principle tells us that the Universe should have same properties in every direction, observations do not match this picture," explains Samushia, of the Institute of Cosmology and Gravitation at the University of Portsmouth. "Because galaxies are themselves parts of larger structures that are growing, they tend to 'infall' towards each other. This infall gives an apparent effect that we only see in the direction towards us, because of the way in which we observe the galaxies."

Using the observed distortions in galaxy positions, the team were able to measure the strength of gravity with a precision of 6 per cent, the strongest constraint of its kind as of today. The measurements turned out to be perfectly consistent with the predictions of Einstein's General Relativity theory.

"Gravity is the main driving force behind the growth of structure in the Universe. According to General Relativity, gravity is a manifestation of the space-time curvature -- massive objects curve the space-time around them, which affects the movement of other objects around them. It's a very elegant theory that has been successful in explaining the outcomes of many experiments, however it is not the only theory of gravity," explained Samushia. "Theoretical physicists have proposed many alternative theories and modifications of General Relativity and the challenge for observational physicists is to test the alternative theories with ever increasing precision."


Story Source:

Materials provided by Royal Astronomical Society (RAS). Note: Content may be edited for style and length.


Journal Reference:

  1. Lado Samushia, Beth A. Reid, Martin White, Will J. Percival, Antonio J. Cuesta, Gong-Bo Zhao, Ashley J. Ross, Marc Manera, Éric Aubourg, Florian Beutler, Jon Brinkmann, Joel R. Brownstein, Kyle S. Dawson, Daniel J. Eisenstein, Shirley Ho, Klaus Honscheid, Claudia Maraston, Francesco Montesano, Robert C. Nichol, Natalie A. Roe, Nicholas P. Ross, Ariel G. Sánchez, David J. Schlegel, Donald P. Schneider, Alina Streblyanska, Daniel Thomas, Jeremy L. Tinker, David A. Wake, Benjamin A. Weaver, Idit Zehavi. The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS): measuring growth rate and geometry with anisotropic clustering. MNRAS, 2014 [abstract]

Cite This Page:

Royal Astronomical Society (RAS). "Clumped galaxies give General Relativity its toughest test yet." ScienceDaily. ScienceDaily, 24 June 2014. <www.sciencedaily.com/releases/2014/06/140624215938.htm>.
Royal Astronomical Society (RAS). (2014, June 24). Clumped galaxies give General Relativity its toughest test yet. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2014/06/140624215938.htm
Royal Astronomical Society (RAS). "Clumped galaxies give General Relativity its toughest test yet." ScienceDaily. www.sciencedaily.com/releases/2014/06/140624215938.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES