New! Sign up for our free email newsletter.
Science News
from research organizations

Surgery Without Stitches: Bio-film From Crab Shells Seals Surgical Wounds

Date:
December 21, 2007
Source:
University of New South Wales
Summary:
A thin polymer bio-film that seals surgical wounds could make sutures a relic of medical history. Measuring just 50 microns, the film is placed on a surgical wound and exposed to an infrared laser, which heats the film just enough to meld it and the tissue, thus perfectly sealing the wound. Known as Surgilux, the device's raw material is extracted from crab shells and has Food and Drug Administration approval in the US.
Share:
FULL STORY

A thin polymer bio-film that seals surgical wounds could make sutures a relic of medical history.

Measuring just 50 microns thick, the film is placed on a surgical wound and exposed to an infrared laser, which heats the film just enough to meld it and the tissue, thus perfectly sealing the wound.

Known as Surgilux, the device's raw material is extracted from crab shells and has Food and Drug Administration approval in the US.

Early test results indicate that it has strongest potential for use in brain and nerve surgery because it can avoid the numerous disadvantages of invasive stictches/sutures, which fail to seal and can act as a source of infection.

Up to 11% of brain surgery patients have to return for repeat surgery due to leakage of cerebro-spinal fluid (CSF) and other complications arising from sutures.

Surgical sutures date back some 4,000 years, so a new approach is long overdue, according to one of the device's inventors and leader of the Bio/polymer Research Group, UNSW scientist John Foster.

"Others have tried surgical glues but these are mainly gel-like so bonding to the tissue is uneven often resulting in leakages and they're not easy to use. The strongest surgical glue is so toxic that it's limited to external applications," says Dr Foster. "Other devices use ultra-violet light to effect rather poor sealing, but UV rays are damaging to living cells

"The beauty of this is that infra-red laser doesn't cause any tissue damage. Better still, Surgilux has anti-microbial properties, which deters post-operative infections."

Foster and his team are working with micro-surgeon Marcus Stoodley who specialises in nerve repair. Based at the Prince of Wales Hospital Stoodley is excited about early test results.

"Surgilux is well suited to repairing damaged nerves because the gold standard -- sutures -- inevitably cause damage to nerves and there is always some permanent loss of function.

"Our test results with rats have shown some degree of permanent nerve recovery within six weeks of operating."

The researchers -- who are looking for commercial backing to initiate clinical trials -- are planning a second generation version of Surgilux that incorporates growth factors and perhaps stem cells to regenerate nerves.


Story Source:

Materials provided by University of New South Wales. Note: Content may be edited for style and length.


Cite This Page:

University of New South Wales. "Surgery Without Stitches: Bio-film From Crab Shells Seals Surgical Wounds." ScienceDaily. ScienceDaily, 21 December 2007. <www.sciencedaily.com/releases/2007/12/071221101736.htm>.
University of New South Wales. (2007, December 21). Surgery Without Stitches: Bio-film From Crab Shells Seals Surgical Wounds. ScienceDaily. Retrieved November 15, 2024 from www.sciencedaily.com/releases/2007/12/071221101736.htm
University of New South Wales. "Surgery Without Stitches: Bio-film From Crab Shells Seals Surgical Wounds." ScienceDaily. www.sciencedaily.com/releases/2007/12/071221101736.htm (accessed November 15, 2024).

Explore More

from ScienceDaily

RELATED STORIES