Single Molecule Based Electronic Components Modelled
- Date:
- September 29, 2007
- Source:
- University of Pittsburgh
- Summary:
- Researchers have created the best method so far of assembling wire-like structures only a single molecule wide, a significant step in science's increasing attempts to reduce the circuitry size of electronic devices to the single molecule scale and provide smaller, faster, and more energy efficient electronics.
- Share:
Researchers based at the University of Pittsburgh have created the best method so far of assembling wire-like structures only a single molecule wide, a significant step in science's increasing attempts to reduce the circuitry size of electronic devices to the single molecule scale and provide smaller, faster, and more energy efficient electronics.
Led by Hrvoje Petek, a professor of physics and chemistry in Pitt's School of Arts and Sciences, the project presents a template for assembling molecules over troughs that are only as wide as a single atom of copper, but can be made to several times that length, matching wires currently used in computers and other devices. These ultra-thin wires are one-dimensional, which may enable them to conduct electricity with minimal loss and thus improve the performance of an electronic device.
The published research pertains to organic--or carbon-based--soccer ball--shaped carbon molecules known as fullerenes, but the method can serve as a template for creating the very tiny wires from a broad range of organic molecules, Petek said. The merits of these wire-like structures can only be fully realized with organic molecules. Materials used in contemporary electronics--such as silicon-are inorganic and cannot be miniaturized to be truly one-dimensional, Petek said.
The wire template was developed by scientists associated with Pitt's Petersen Institute for NanoScience and Engineering together with researchers from the chemistry departments at Pitt and the University of Virginia.
The findings were published online recently in the Journal of the American Chemical Society (JACS).
Story Source:
Materials provided by University of Pittsburgh. Note: Content may be edited for style and length.
Cite This Page: