New! Sign up for our free email newsletter.
Science News
from research organizations

Several Commonly Used Pesticides Are Toxic To Mitochondria In Laboratory Experiments

Date:
November 10, 2003
Source:
Emory University Health Sciences Center
Summary:
Scientists at Emory University School of Medicine have found in laboratory experiments that several commonly used pesticides are just as toxic or even more toxic to the mitochondria of cells than the pesticide rotenone, which already has been implicated in the development of Parkinson's disease.
Share:
FULL STORY

Scientists at Emory University School of Medicine have found in laboratory experiments that several commonly used pesticides are just as toxic or even more toxic to the mitochondria of cells than the pesticide rotenone, which already has been implicated in the development of Parkinson's disease. The Emory neurologists, led by Tim Greenamyre, MD, PhD and Todd B. Sherer, PhD, will present the results of their comparative research with pesticides at the Society for Neuroscience meeting in New Orleans on Saturday, Nov. 8.

Parkinson's disease, which is one of the most common neurodegenerative diseases, has been associated abnormalities of mitochondria, which are the "power plants" that provide all cells with energy. Rotenone and many other pesticides are known to damage the mitochondria by inhibiting a mitochondrial enzyme called complex I. In earlier experiments, Dr. Greenamyre and his colleagues found that chronic treatment with low levels of rotenone caused gradual degeneration of the dopamine neurons in rats, and reproduced many of the features of Parkinsonism.

In the new study, the Emory scientists exposed human neuroblastoma cells to the pesticides rotenone, pyridaben, fenazaquin, and fenpyroximate, all of which inhibit complex I. Pyridaben was by far the most potent toxic compound, followed by rotenone and fenpyroximate, with fenazaquin being the least toxic. Pyridaben was also more potent than rotenone in producing "free radicals" and oxidative damage to the cells, both of which are thought to be important in causing Parkinson's disease.

"These results show that commonly used pesticides are toxic to cells, and may cause the kinds of cellular damage that lead to diseases such as Parkinson's," Dr. Sherer says. "Although our study does not prove that any particular pesticide causes Parkinson's, it does lead to more questions about the safety of chronic exposure to these environmental agents and certainly warrants additional research." Last year Emory created a new Emory Collaborative Center for Parkinson's Disease Environmental Research through a grant of more than $6.5 million from the National Institute of Environmental Health Sciences.

"For quite a while scientists have believed that environmental factors, including pesticides, may be important in causing Parkinson's disease," Dr. Greenamyre says. "We are continuing our research to determine exactly how these exposures cause nerve cell damage and death."

Other Emory scientists involved in the research study were Gary W. Miller, PhD, associate professor in Emory's Rollins School of Public Health, and neurologists Alexander Panov, PhD and Jason Richardson, PhD.


Story Source:

Materials provided by Emory University Health Sciences Center. Note: Content may be edited for style and length.


Cite This Page:

Emory University Health Sciences Center. "Several Commonly Used Pesticides Are Toxic To Mitochondria In Laboratory Experiments." ScienceDaily. ScienceDaily, 10 November 2003. <www.sciencedaily.com/releases/2003/11/031110054609.htm>.
Emory University Health Sciences Center. (2003, November 10). Several Commonly Used Pesticides Are Toxic To Mitochondria In Laboratory Experiments. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2003/11/031110054609.htm
Emory University Health Sciences Center. "Several Commonly Used Pesticides Are Toxic To Mitochondria In Laboratory Experiments." ScienceDaily. www.sciencedaily.com/releases/2003/11/031110054609.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES