New! Sign up for our free email newsletter.
Science News
from research organizations

Scientists Demonstrate New Way To Control Chemical Reactions

Date:
June 2, 2003
Source:
Brookhaven National Laboratory
Summary:
Using a low-temperature scanning tunneling microscope (STM) to selectively “tweak” the vibrations of individual molecules, scientists have demonstrated a new way to directly influence the outcome of chemical reactions. The ability to exert such control may one day allow scientists to eliminate unwanted byproducts or selectively produce end products with potential commercial value.
Share:
FULL STORY

UPTON, NY — Using a low-temperature scanning tunneling microscope (STM) to selectively “tweak” the vibrations of individual molecules, scientists have demonstrated a new way to directly influence the outcome of chemical reactions. The ability to exert such control may one day allow scientists to eliminate unwanted byproducts or selectively produce end products with potential commercial value.

Zhen Song, now a research associate at the U.S. Department of Energy’s Brookhaven National Laboratory, used the technique to investigate the desorption of ammonia molecules from a copper surface while working with collaborators* at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin, Germany. The work is described in the May 29, 2003, issue of Nature.

By detecting and controlling the tunneling electrons running between tip and sample, STM techniques enable scientists not only to measure the structure of materials on an atomic level, but also to manipulate molecules individually on the substrate.

“We selected a chemisorbed ammonia molecule on a copper surface under the microscope and used the tip of the STM to excite vibrations of the molecule,” said Song. “We found that the motion of the molecule can be controlled by tuning the parameters of the tunneling electrons: the electronic current and energy.”

Above a certain threshold energy, the tunneling electrons induced one mode of molecular vibration that resulted in a movement of the ammonia molecules to new positions on the copper surface. Below the threshold, the electrons induced a different mode of vibration that allowed the ammonia molecules to completely disassociate from the copper.

“We are able to select a particular reaction pathway by adjusting the electronic tunneling current and energy,” Song said.

This is the first example of using STM in mode-selective chemistry, a field that has previously been dominated by laser techniques. Using STM, the study of the reaction mechanism can be achieved with very low power irradiation, and the monitoring of the reaction is limited to a single molecule. This approach is complementary to the conventional laser techniques used in the study of mode-selective chemistry.

“It would be interesting to extend this methodology to more complex processes, for example, by searching for strategies of controlling and enhancing reactivity at surfaces through the discovery of new reaction pathways that are inaccessible via classical ‘thermal’ chemistry,” said Song.

* This research was a collaboration among scientists at the Fritz-Haber-Institut, Germany, the Consejo Superior de Investigaciones Científicas, Spain, the Universit Paul Sabatier, France, and Brookhaven National Laboratory.

The U.S. Department of Energy's Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.


Story Source:

Materials provided by Brookhaven National Laboratory. Note: Content may be edited for style and length.


Cite This Page:

Brookhaven National Laboratory. "Scientists Demonstrate New Way To Control Chemical Reactions." ScienceDaily. ScienceDaily, 2 June 2003. <www.sciencedaily.com/releases/2003/06/030602025508.htm>.
Brookhaven National Laboratory. (2003, June 2). Scientists Demonstrate New Way To Control Chemical Reactions. ScienceDaily. Retrieved December 29, 2024 from www.sciencedaily.com/releases/2003/06/030602025508.htm
Brookhaven National Laboratory. "Scientists Demonstrate New Way To Control Chemical Reactions." ScienceDaily. www.sciencedaily.com/releases/2003/06/030602025508.htm (accessed December 29, 2024).

Explore More

from ScienceDaily

RELATED STORIES