New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Solubility

Solubility is a property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. The resulting solution is called a saturated solution. Certain substances are soluble in all proportions with a given solvent, such as ethanol in water. This property is known as miscibility.

Under various conditions, the equilibrium solubility can be exceeded to give a so-called supersaturated solution, which is metastable. The solvent is often a solid, which can be a pure substance or a mixture. The species that dissolves, the solute, can be a gas, another liquid, or a solid. Solubilities range widely, from infinitely soluble such as ethanol in water, to poorly soluble, such as silver chloride in water. The term insoluble is often applied to poorly soluble compounds, though strictly speaking there are very few cases where there is absolutely no material dissolved.

The process of dissolving, called dissolution, is relatively straightforward for covalent substances such as ethanol. When ethanol dissolves in water, the ethanol molecules remain intact but form new hydrogen bonds with the water. When, however, an ionic compound such as sodium chloride (NaCl) dissolves in water, the sodium chloride lattice dissociates into separate ions which are solvated (wrapped) with a coating of water molecules. Nonetheless, NaCl is said to dissolve in water, because evaporation of the solvent returns crystalline NaCl.

Related Stories
 


Matter & Energy News

August 27, 2025

Researchers have developed a blueprint for weaving hopfions—complex, knot-like light structures—into repeating spacetime crystals. By exploiting two-color beams, they can generate ordered chains and lattices with tunable topology, potentially ...
Researchers in Germany have unveiled the Metafiber, a breakthrough device that allows ultra-precise, rapid, and compact control of light focus directly within an optical fiber. Unlike traditional ...
Hydrogen fuel cells could power cars, devices, and homes with nothing but water as a byproduct—but platinum’s cost holds them back. Chinese researchers have now unveiled a breakthrough iron-based catalyst that could rival platinum while boosting ...
A research team created a plant-inspired molecule that can store four charges using sunlight, a key step toward artificial photosynthesis. Unlike past attempts, it works with dimmer light, edging closer to real-world solar fuel ...
Scientists have cracked one of chemistry’s toughest challenges with indoles, using copper to unlock a spot once thought too stubborn to change. The discovery could pave the way for easier, cheaper ...
Scientists using Google’s quantum processor have taken a major step toward unraveling the deepest mysteries of the universe. By simulating fundamental interactions described by gauge theories, the ...
Physicists have built a novel superconducting platform that mimics hidden vortex states once thought unobservable. Their "backdoor" method overcomes experimental limits, letting them control quantum behavior on demand. The discovery could pave the ...
Scientists have discovered that electron spin loss, long considered waste, can instead drive magnetization switching in spintronic devices, boosting efficiency by up to three times. The scalable, semiconductor-friendly method could accelerate the ...
Researchers cracked the mystery of altermagnets, materials with no net magnetization yet strange light-reflecting powers, by creating a new optical measurement method. Their findings confirmed altermagnetism in an organic crystal and opened doors to ...
A Rochester team engineered a new type of solar thermoelectric generator that produces 15 times more power than earlier versions. By enhancing heat absorption and dissipation rather than tweaking semiconductor materials, they dramatically improved ...
Ripple bugs’ fan-like legs inspired engineers to build the Rhagobot, a tiny robot with self-morphing fans. By mimicking these insects’ passive, ultra-fast movements, the robot gains speed, control, and endurance without extra ...
Scientists have developed a groundbreaking cryo-optical microscopy technique that freezes living cells mid-action, capturing ultra-detailed snapshots of fast biological processes. By rapidly immobilizing cells at precise moments, researchers can ...

Latest Headlines

updated 12:56 pm ET