New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Knot theory

Knot theory is the mathematical branch of topology that studies mathematical knots, which are defined as embeddings of a circle in 3-dimensional Euclidean space, R3. This is basically equivalent to a conventional knotted string with the ends joined together to prevent it from becoming undone. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knots can be described in various ways. Given a method of description, however, there may be more than one description that represents the same knot. For example, a common method of describing a knot is a planar diagram. But any given knot can be drawn in many different ways using a planar diagram. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot. One way of distinguishing knots is by using a knot invariant, a "quantity" which remains the same even with different descriptions of a knot.

The concept of a knot has been extended to higher dimensions by considering n-dimensional spheres in m-dimensional Euclidean space. This was investigated most actively in the period 1960-1980, when a number of breakthroughs were made. In recent years, low dimensional phenomena have garnered the most interest.

Research in knot theory began with the creation of knot tables and the systematic tabulation of knots. While tabulation remains an important task, today's researchers have a wide variety of backgrounds and goals.

In the last 30 years, knot theory has also become a tool in applied mathematics. Chemists and biologists use knot theory to understand, for example, chirality of molecules and the actions of enzymes on DNA.

Related Stories
 


Matter & Energy News

August 24, 2025

Ripple bugs’ fan-like legs inspired engineers to build the Rhagobot, a tiny robot with self-morphing fans. By mimicking these insects’ passive, ultra-fast movements, the robot gains speed, control, and endurance without extra ...
Scientists have developed a groundbreaking cryo-optical microscopy technique that freezes living cells mid-action, capturing ultra-detailed snapshots of fast biological processes. By rapidly immobilizing cells at precise moments, researchers can ...
By using quantum dots and smart encryption protocols, researchers overcame a 40-year barrier in quantum communication, showing that secure networks don’t need perfect hardware to outperform today’s best ...
Researchers at Zhejiang University have found a way to stop performance-killing Auger recombination in perovskite lasers, using a clever additive during processing. Their method produced a record-breaking laser with unprecedented efficiency, ...
Scientists may have uncovered the missing piece of quantum computing by reviving a particle once dismissed as useless. This particle, called the neglecton, could give fragile quantum systems the full power they need by working alongside Ising ...
Researchers developed a crystal that inhales and exhales oxygen like lungs. It stays stable under real-world conditions and can be reused many times, making it ideal for energy and electronic applications. This innovation could reshape technologies ...
Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic ...
Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit ...
Rice University scientists have discovered a way to make tiny vibrations, called phonons, interfere with each other more strongly than ever before. Using a special sandwich of silver, graphene, and silicon carbide, they created a record-breaking ...
Researchers have found a clever way to make quantum dots, tiny light-emitting crystals, produce streams of perfectly controlled photons without relying on expensive, complex electronics. By using a precise sequence of laser pulses, the team can ...
Scientists have developed a lightning-fast AI tool called HEAT-ML that can spot hidden “safe zones” inside a fusion reactor where parts are protected from blistering plasma heat. Finding these areas, known as magnetic shadows, is key to keeping ...
Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and ...

Latest Headlines

updated 12:56 pm ET