New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Active optics

Active optics is a relatively new technology for reflecting telescopes developed in the 1980s, which has more recently enabled the construction of a generation of telescopes with 8 metre primary mirrors. Active optics works by "actively" adjusting the telescope's mirrors. This method is used by, among others, the Nordic Optical Telescope, the New Technology Telescope and the Keck telescopes, as well as all large telescopes built in the last decade. Most modern telescopes are reflectors, with the primary element being a very large mirror. Historically, the mirrors had to be very thick to hold its shape to the required accuracy as the telescope travelled across the sky. A new generation of telescopes built since the 1980s uses instead very thin mirrors, which are too thin to keep themselves rigidly in the correct shape. Instead, an array of actuators behind the mirror keeps it in an optimal shape. The telescope may also be segmented into many small mirrors, preventing most of the gravitational distortion that occurs in large, thick mirrors.

Related Stories
 


Space & Time News

January 18, 2026

When scientists sent bacteria-infecting viruses to the International Space Station, the microbes did not behave the same way they do on Earth. In microgravity, infections still occurred, but both viruses and bacteria evolved differently over time. ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
A distant pulsar’s radio signal flickers as it passes through space, much like stars twinkle in Earth’s atmosphere. By monitoring this effect for 10 months, researchers watched the pattern slowly evolve as gas, Earth, and the pulsar all moved. ...
Mars looks familiar from afar, but surviving there means creating a protective oasis in a hostile world. Instead of shipping construction materials from Earth, researchers are exploring how to use Martian soil as the raw ingredient. Two tough ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
As we age, our immune system quietly loses its edge, and scientists have uncovered a surprising reason why. A protein called platelet factor 4 naturally declines over time, allowing blood stem cells to multiply too freely and drift toward unhealthy, ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...
Astronomers have uncovered a massive hidden planet and a rare “failed star” by combining ultra-precise space data with some of the sharpest ground-based images ever taken. Using the Subaru Telescope in Hawaiʻi, the OASIS survey tracked subtle ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers have shown that quantum signals can be sent from Earth up to satellites, not just down from space as previously believed. This breakthrough could make global quantum networks far more powerful, affordable, and ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...

Latest Headlines

updated 12:56 pm ET