Brain-heart axis: Strokes change epigenetics of immune system
- Date:
- July 23, 2024
- Source:
- Ludwig-Maximilians-Universität München
- Summary:
- A stroke not only causes acute damage to the brain, but can also have long-term health implications for other organs -- such as the heart. Researchers have worked on the hypothesis that the high rate of comorbidities that develop after a stroke could have a common immunological cause. And they actually managed to find it: The origin of the dysfunctions in other parts of the body lies in the immunological memory of the blood-forming cells in bone marrow.
- Share:
A stroke not only causes acute damage to the brain, but can also have long-term health implications for other organs -- such as the heart. "However, there has been little research to date on the effects of brain injuries on systemic immunity," says Professor Arthur Liesz from the Institute for Stroke and Dementia Research (ISD) at LMU University Hospital. Liesz is the principal investigator of a new study that was recently published in the journal Cell. The researchers worked on the hypothesis that the high rate of comorbidities that develop after a stroke could have a common immunological cause. And they actually managed to find it: The origin of the dysfunctions in other parts of the body lies in the immunological memory of the blood-forming cells in bone marrow.
Using single-cell sequencing techniques, Liesz and his team demonstrated the presence of permanent proinflammatory changes in the transcriptome of certain immune cells (monocytes/macrophages) in several organs. In other words, certain gene segments are transcribed differently there after the stroke, which unbalances the proteome. These epigenetic modifications occur most frequently in the heart, where they can cause scarring and impair pumping function. "We managed to identify the protein IL-1b as the main culprit for the epigenetic modifications that affect immunological memory after a stroke," says Liesz.
Promising therapeutic approaches on the horizon
The researchers demonstrated in a mouse model the connection between modified blood formation in bone marrow through overexpressed IL-1b and cardiac dysfunctions. Moreover, they showed that blocking IL-1b and inhibiting migration of the proinflammatory cells to the heart both successfully prevented cardiac problems after a stroke. "These findings are hugely significant, as they open up the promise of effective therapeutic approaches for the prevention of secondary cardiac conditions after a stroke," reckons Liesz. The authors of the study believe that the epigenetic mechanisms they described for the reprogramming of the immune system in the brain-heart axis will create a new framework for explaining the development of various IL-1b-mediated comorbidities.
Story Source:
Materials provided by Ludwig-Maximilians-Universität München. Note: Content may be edited for style and length.
Journal Reference:
- Alba Simats, Sijia Zhang, Denise Messerer, Faye Chong, Sude Beşkardeş, Aparna Sharma Chivukula, Jiayu Cao, Simon Besson-Girard, Felipe A. Montellano, Caroline Morbach, Olga Carofiglio, Alessio Ricci, Stefan Roth, Gemma Llovera, Rashween Singh, Yiming Chen, Severin Filser, Nikolaus Plesnila, Christian Braun, Hannah Spitzer, Ozgun Gokce, Martin Dichgans, Peter U. Heuschmann, Kinta Hatakeyama, Eduardo Beltrán, Sebastian Clauss, Boyan Bonev, Christian Schulz, Arthur Liesz. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell, 2024; DOI: 10.1016/j.cell.2024.06.028
Cite This Page: