New! Sign up for our free email newsletter.
Science News
from research organizations

Ryugu samples illuminate terrestrial weathering effects on primitive meteorites

Date:
December 11, 2023
Source:
Tohoku University
Summary:
Asteroids offer valuable windows into the early solar system, given that they are remnants of planetary embryos that failed to form into planets. A recent analysis of samples from Ryugu offered insights into the composition of water- and carbon-rich small bodies in the solar system. 
Share:
FULL STORY

A groundbreaking study conducted by a team of international scientists has unveiled unprecedented insights into the nature of the asteroid Ryugu and shed light on the composition of water- and carbon-rich small bodies in the solar system.

Asteroids like Ryugu are remnants of planetary embryos that never reached larger sizes, making them invaluable windows into materials that formed in the early solar system. The study centered on laboratory measurements of the samples brought back to the Earth by the Hayabusa2 spacecraft in 2020. Led by the Japan Aerospace Exploration Agency (JAXA), Hayabusa2 aimed to uncover the true nature of Ryugu and explore how astrologists can use knowledge from meteorites to interpret telescopic observations of other hydrous asteroids.

Unlike meteorites derived from similar hydrous asteroids, the Ryugu samples avoided terrestrial alteration -- the interaction with oxygen and water in the Earth's atmosphere.

Reflectance spectroscopy, a primary technique linking laboratory analyses of meteorites to asteroid observations, was employed to compare fresh Ryugu samples with meteorites altered in terrestrial environments. The team successfully developed analytical procedures that avoided exposing the samples to Earth's atmosphere, ensuring the preservation of their original conditions.

Previous studies suggested that Ryugu's sample mineralogy resembled CI chondrites, the most primitive meteorites chemically. However, other studies have contradicted this by revealing a significant difference in reflectance spectra between Ryugu samples and CI chondrites. Further investigations in the new study indicated that heating CI samples under reducing conditions at 300 °C reproduced Ryugu's sample mineralogy well, resulting in spectra closely matching those of Ryugu samples.

The findings challenge previous assumptions about the parent bodies of CI chondrites and underscore the susceptibility of primitive meteorite spectra to terrestrial weathering. The study suggests that actual CI chondrite parent bodies likely exhibit darker and flatter reflectance spectra than previously thought.

"This study opens new avenues for understanding the composition and evolution of small bodies in our solar system. By considering the impact of terrestrial weathering on meteorites, we can refine our interpretations of asteroid compositions and advance our knowledge of the solar system's early history," said Kana Amano, a former PhD student at the early Solar System evolution Research Group at Tohoku University and co-author of the paper.

Details of Amano and her colleagues' findings were published in the journal Science Advances on December 6, 2023.


Story Source:

Materials provided by Tohoku University. Note: Content may be edited for style and length.


Journal Reference:

  1. Kana Amano, Moe Matsuoka, Tomoki Nakamura, Eiichi Kagawa, Yuri Fujioka, Sandra M. Potin, Takahiro Hiroi, Eri Tatsumi, Ralph E. Milliken, Eric Quirico, Pierre Beck, Rosario Brunetto, Masayuki Uesugi, Yoshio Takahashi, Takahiro Kawai, Shohei Yamashita, Yuma Enokido, Taiga Wada, Yoshihiro Furukawa, Michael E. Zolensky, Driss Takir, Deborah L. Domingue, Camilo Jaramillo-Correa, Faith Vilas, Amanda R. Hendrix, Mizuha Kikuiri, Tomoyo Morita, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda. Reassigning CI chondrite parent bodies based on reflectance spectroscopy of samples from carbonaceous asteroid Ryugu and meteorites. Science Advances, 2023; 9 (49) DOI: 10.1126/sciadv.adi3789

Cite This Page:

Tohoku University. "Ryugu samples illuminate terrestrial weathering effects on primitive meteorites." ScienceDaily. ScienceDaily, 11 December 2023. <www.sciencedaily.com/releases/2023/12/231211114608.htm>.
Tohoku University. (2023, December 11). Ryugu samples illuminate terrestrial weathering effects on primitive meteorites. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2023/12/231211114608.htm
Tohoku University. "Ryugu samples illuminate terrestrial weathering effects on primitive meteorites." ScienceDaily. www.sciencedaily.com/releases/2023/12/231211114608.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES