New! Sign up for our free email newsletter.
Science News
from research organizations

Introducing organs-on-chips to the lymph system

Date:
March 9, 2022
Source:
Texas A&M University
Summary:
Currently, there is little research focused on understanding mechanisms and drug discovery of lymphatic vascular diseases. However, conditions such as lymphedema, a buildup of fluid in the body when the lymph system is damaged, impact more than 200,000 people every year in the United States alone.
Share:
FULL STORY

Currently, there is little research focused on understanding mechanisms and drug discovery of lymphatic vascular diseases. However, conditions such as lymphedema, a buildup of fluid in the body when the lymph system is damaged, impact more than 200,000 people every year in the United States alone.

Dr. Abhishek Jain, assistant professor in the Department of Biomedical Engineering at Texas A&M University, has taken his expertise in organ-on-chip models and applied them to a field they've never been used in before, creating the first lymphangion-chip.

To engineer this new device, Jain's team first developed a new technique to create microfluidic cylindrical blood or lymphatic vessels consisting of endothelial cells, which line blood vessels. It could then use this technique to create a co-cultured multicellular lymphangion, the functional unit of a lymph vessel, and successfully recreate a typical section of a lymphatic transport vessel in vitro, or outside the body.

"We can now better understand how mechanical forces regulate lymphatic physiology and pathophysiology," Jain said. "We can also understand what are the mechanisms that result in lymphedema, and then we can find new targets for drug discovery with this platform."

The project is in collaboration with Dr. David Zawieja from the Texas A&M College of Medicine. Their research was published in the Jan. 7 issue of the journal Lab on a Chip.

"Collaborations with Dr. Zawieja and others in the department played a crucial role," Jain said. "They introduced me to this topic and provide their longstanding expertise that has made it possible for us to create this new organ-on-chip platform and now advance it in these exciting directions using contemporary experimental models."

Jain said the impact of this work is far-reaching because there is a new hope for patients with lymphatic diseases. They can now learn about the biology of these diseases and reach a point where they can be treated.

"The most exciting part of this research is that it is allowing us to now push the organ-on-chip in directions where finding cures for rare and orphan (understudied) diseases is possible with less effort and money," Jain said. "We can help the pharma industry to invest in this platform and find a cure for lymphedema that impacts millions of people."


Story Source:

Materials provided by Texas A&M University. Original written by Jennifer Reiley. Note: Content may be edited for style and length.


Journal Reference:

  1. Amirali Selahi, Teshan Fernando, Sanjukta Chakraborty, Mariappan Muthuchamy, David C. Zawieja, Abhishek Jain. Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. Lab on a Chip, 2022; 22 (1): 121 DOI: 10.1039/D1LC00720C

Cite This Page:

Texas A&M University. "Introducing organs-on-chips to the lymph system." ScienceDaily. ScienceDaily, 9 March 2022. <www.sciencedaily.com/releases/2022/03/220309151723.htm>.
Texas A&M University. (2022, March 9). Introducing organs-on-chips to the lymph system. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2022/03/220309151723.htm
Texas A&M University. "Introducing organs-on-chips to the lymph system." ScienceDaily. www.sciencedaily.com/releases/2022/03/220309151723.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES