New! Sign up for our free email newsletter.
Science News
from research organizations

Simulations provide clue to missing planets mystery

Date:
November 12, 2021
Source:
National Institutes of Natural Sciences
Summary:
New supercomputer simulations show that after creating a ring, a planet can move away and leave the ring behind. Not only does this bolster the planet theory for ring formation, the simulations show that a migrating planet can produce a variety of patterns matching those actually observed in disks.
Share:
FULL STORY

Forming planets are one possible explanation for the rings and gaps observed in disks of gas and dust around young stars. But this theory has trouble explaining why it is rare to find planets associated with rings. New supercomputer simulations show that after creating a ring, a planet can move away and leave the ring behind. Not only does this bolster the planet theory for ring formation, the simulations show that a migrating planet can produce a variety of patterns matching those actually observed in disks.

Young stars are encircled by protoplanetary disks of gas and dust. One of the world's most powerful radio telescope arrays, ALMA (Atacama Large Millimeter/submillimeter Array), has observed a variety of patterns of denser and less dense rings and gaps in these protoplanetary disks. Gravitational effects from planets forming in the disk are one theory to explain these structures, but follow-up observations looking for planets near the rings have largely been unsuccessful.

In this research a team from Ibaraki University, Kogakuin University, and Tohoku University in Japan used the world's most powerful supercomputer dedicated to astronomy, ATERUI II at the National Astronomical Observatory of Japan, to simulate the case of a planet moving away from its initial formation site. Their results showed that in a low viscosity disk, a ring formed at the initial location of a planet doesn't move as the planet migrates inwards. The team identified three distinct phases. In Phase I, the initial ring remains intact as the planet moves inwards. In Phase II, the initial ring begins to deform and a second ring starts forming at the new location of the planet. In Phase III, the initial ring disappears and only the latter ring remains.

These results help explain why planets are rarely observed near the outer rings, and the three phases identified in the simulations match well with the patterns observed in actual rings. Higher resolution observations from next-generation telescopes, which will be better able to search for planets close to the central star, will help determine how well these simulations match reality.


Story Source:

Materials provided by National Institutes of Natural Sciences. Note: Content may be edited for style and length.


Journal Reference:

  1. Kazuhiro D. Kanagawa, Takayuki Muto, Hidekazu Tanaka. Dust Rings as a Footprint of Planet Formation in a Protoplanetary Disk. The Astrophysical Journal, 2021; 921 (2): 169 DOI: 10.3847/1538-4357/ac282b

Cite This Page:

National Institutes of Natural Sciences. "Simulations provide clue to missing planets mystery." ScienceDaily. ScienceDaily, 12 November 2021. <www.sciencedaily.com/releases/2021/11/211112100515.htm>.
National Institutes of Natural Sciences. (2021, November 12). Simulations provide clue to missing planets mystery. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2021/11/211112100515.htm
National Institutes of Natural Sciences. "Simulations provide clue to missing planets mystery." ScienceDaily. www.sciencedaily.com/releases/2021/11/211112100515.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES