New! Sign up for our free email newsletter.
Science News
from research organizations

Simple robots, smart algorithms

Date:
April 29, 2021
Source:
Georgia Institute of Technology
Summary:
Inspired by a theoretical model of particles moving around on a chessboard, new robot swarm research shows that, as magnetic interactions increase, dispersed 'dumb robots' can abruptly gather in large, compact clusters to accomplish complex tasks. Researchers report that these 'BOBbots' (behaving, organizing, buzzing bots) are also capable of collectively clearing debris that is too heavy for one alone to move, thanks to a robust algorithm.
Share:
FULL STORY

Anyone with children knows that while controlling one child can be hard, controlling many at once can be nearly impossible. Getting swarms of robots to work collectively can be equally challenging, unless researchers carefully choreograph their interactions -- like planes in formation -- using increasingly sophisticated components and algorithms. But what can be reliably accomplished when the robots on hand are simple, inconsistent, and lack sophisticated programming for coordinated behavior?

A team of researchers led by Dana Randall, ADVANCE Professor of Computing and Daniel Goldman, Dunn Family Professor of Physics, both at Georgia Institute of Technology, sought to show that even the simplest of robots can still accomplish tasks well beyond the capabilities of one, or even a few, of them. The goal of accomplishing these tasks with what the team dubbed "dumb robots" (essentially mobile granular particles) exceeded their expectations, and the researchers report being able to remove all sensors, communication, memory and computation -- and instead accomplishing a set of tasks through leveraging the robots' physical characteristics, a trait that the team terms "task embodiment."

The team's BOBbots, or "behaving, organizing, buzzing bots" that were named for granular physics pioneer Bob Behringer, are "about as dumb as they get," explains Randall. "Their cylindrical chassis have vibrating brushes underneath and loose magnets on their periphery, causing them to spend more time at locations with more neighbors." The experimental platform was supplemented by precise computer simulations led by Georgia Tech physics student Shengkai Li, as a way to study aspects of the system inconvenient to study in the lab.

Despite the simplicity of the BOBbots, the researchers discovered that, as the robots move and bump into each other, "compact aggregates form that are capable of collectively clearing debris that is too heavy for one alone to move," according to Goldman. "While most people build increasingly complex and expensive robots to guarantee coordination, we wanted to see what complex tasks could be accomplished with very simple robots."

Their work, as reported April 23, 2021 in the journal Science Advances, was inspired by a theoretical model of particles moving around on a chessboard. A theoretical abstraction known as a self-organizing particle system was developed to rigorously study a mathematical model of the BOBbots. Using ideas from probability theory, statistical physics and stochastic algorithms, the researchers were able to prove that the theoretical model undergoes a phase change as the magnetic interactions increase -- abruptly changing from dispersed to aggregating in large, compact clusters, similar to phase changes we see in common everyday systems, like water and ice.

"The rigorous analysis not only showed us how to build the BOBbots, but also revealed an inherent robustness of our algorithm that allowed some of the robots to be faulty or unpredictable," notes Randall, who also serves as a professor of computer science and adjunct professor of mathematics at Georgia Tech.


Story Source:

Materials provided by Georgia Institute of Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. Shengkai Li, Bahnisikha Dutta, Sarah Cannon, Joshua J. Daymude, Ram Avinery, Enes Aydin, Andréa W. Richa, Daniel I. Goldman, Dana Randall. Programming active cohesive granular matter with mechanically induced phase changes. Science Advances, 2021; 7 (17): eabe8494 DOI: 10.1126/sciadv.abe8494

Cite This Page:

Georgia Institute of Technology. "Simple robots, smart algorithms." ScienceDaily. ScienceDaily, 29 April 2021. <www.sciencedaily.com/releases/2021/04/210423210742.htm>.
Georgia Institute of Technology. (2021, April 29). Simple robots, smart algorithms. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2021/04/210423210742.htm
Georgia Institute of Technology. "Simple robots, smart algorithms." ScienceDaily. www.sciencedaily.com/releases/2021/04/210423210742.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES