New! Sign up for our free email newsletter.
Science News
from research organizations

AI reduces computational time required to study fate of molecules exposed to light

Date:
December 1, 2020
Source:
University of Groningen
Summary:
Light-induced processes are critical in transformative technologies such as solar energy harvesting, as well as in photomedicine and photoresponsive materials. Theoretical studies of the dynamics of photoinduced processes require numerous electronic structure calculations, which are computationally expensive. Scientists developed machine learning-based algorithms, which reduce these computations significantly.
Share:
FULL STORY

Light-induced processes are critical in transformative technologies such as solar energy harvesting, as well as in photomedicine and photoresponsive materials. Theoretical studies of the dynamics of photoinduced processes require numerous electronic structure calculations, which are computationally expensive. Scientists from the University of Groningen developed machine learning-based algorithms, which reduce these computations significantly. The Open Source software package that they developed, PySurf, was presented in a paper in the Journal of Chemical Theory and Computation on 24 November.

How do molecules behave when they are exposed to light? Knowledge of this process is not only central to crucial processes in nature, such as photosynthesis and vitamin D production, but it is also critical for the rational design of new molecules with specific photoresponsive properties.

Machine learning

Yet, despite great advances in hardware and computational methods, calculations of the interaction between light and molecules is still a challenge, explains Shirin Faraji, Associate Professor in Theoretical Chemistry, the lead author of the paper. 'The high-level electronic structure calculations are already very costly for medium-sized molecules, typical chromophores have around thirty heavy atoms.' Including the influence of the environment at the quantum mechanical level on such a system is practically impossible.

'Current software searches the entire conformational space, but we use machine learning to exclude parts of this conformational space search, making it a very smart search,' Faraji explains. 'Our software, therefore, requires several orders of magnitude less computational time than existing direct dynamics software.' In the paper, the developers report the photodynamics of two benchmark molecules, SO2 and pyrazine, and show that their results are comparable to those obtained using simulations that are based entirely on quantum dynamics.

Quantum chemistry

Furthermore, the software package was developed from scratch and is easy to adapt for specific purposes, for example by using plug-in and workflow engines. Faraji: 'A PhD student could easily dig into the code and develop a specific algorithm, for example, a new neural-network-based algorithm.'

Faraji contributed code to several software packages, most notably Q-Chem, one of the world's leading quantum chemistry software programs, and is currently a member of the Q-Chem Board of Directors. The new PySurf package will interface with Q-Chem, but also with other electronic structure software. PySurf is Open Source, which means that it is available as a free download together with the manual, and Faraji's team will provide support for users.

First release

The PySurf software is the result of a project funded by a personal grant to Faraji from the Dutch Research Council (NWO) Vidi programme. Faraji: 'We are only a year and a half into this five-year project. So, the current version is just the first release. We continue to work on the program to optimize it and to create a user-friendly interface.'


Story Source:

Materials provided by University of Groningen. Note: Content may be edited for style and length.


Journal Reference:

  1. Maximilian F. S. J. Menger, Johannes Ehrmaier, Shirin Faraji. PySurf: A Framework for Database Accelerated Direct Dynamics. Journal of Chemical Theory and Computation, 2020; DOI: 10.1021/acs.jctc.0c00825

Cite This Page:

University of Groningen. "AI reduces computational time required to study fate of molecules exposed to light." ScienceDaily. ScienceDaily, 1 December 2020. <www.sciencedaily.com/releases/2020/12/201201124101.htm>.
University of Groningen. (2020, December 1). AI reduces computational time required to study fate of molecules exposed to light. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2020/12/201201124101.htm
University of Groningen. "AI reduces computational time required to study fate of molecules exposed to light." ScienceDaily. www.sciencedaily.com/releases/2020/12/201201124101.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES