New! Sign up for our free email newsletter.
Science News
from research organizations

Patterning method could pave the way for new fiber-based devices, smart textiles

Date:
November 25, 2020
Source:
American Chemical Society
Summary:
Multimaterial fibers that integrate metal, glass and semiconductors could be useful for applications such as biomedicine, smart textiles and robotics. But because the fibers are composed of the same materials along their lengths, it is difficult to position functional elements, such as electrodes or sensors, at specific locations. Now, researchers have developed a method to pattern hundreds-of-meters-long multimaterial fibers with embedded functional elements.
Share:
FULL STORY

Multimaterial fibers that integrate metal, glass and semiconductors could be useful for applications such as biomedicine, smart textiles and robotics. But because the fibers are composed of the same materials along their lengths, it is difficult to position functional elements, such as electrodes or sensors, at specific locations. Now, researchers reporting in ACS Central Science have developed a method to pattern hundreds-of-meters-long multimaterial fibers with embedded functional elements.

Youngbin Lee, Polina Anikeeva and colleagues developed a thiol-epoxy/thiol-ene polymer that could be combined with other materials, heated and drawn from a macroscale model into fibers that were coated with the polymer. When exposed to ultraviolet light, the polymer, which is photosensitive, crosslinked into a network that was insoluble to common solvents, such as acetone. By placing "masks" at specific locations along the fiber in a process known as photolithography, the researchers could protect the underlying areas from UV light. Then, they removed the masks and treated the fiber with acetone. The polymer in the areas that had been covered dissolved to expose the underlying materials.

As a proof of concept, the researchers made patterns along fibers that exposed an electrically conducting filament underneath the thiol-epoxy/thiol-ene coating. The remaining polymer acted as an insulator along the length of the fiber. In this way, electrodes or other microdevices could be placed in customizable patterns along multimaterial fibers, the researchers say.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. Youngbin Lee, Andres Canales, Gabriel Loke, Mehmet Kanik, Yoel Fink, Polina Anikeeva. Selectively Micro-Patternable Fibers via In-Fiber Photolithography. ACS Central Science, 2020; DOI: 10.1021/acscentsci.0c01188

Cite This Page:

American Chemical Society. "Patterning method could pave the way for new fiber-based devices, smart textiles." ScienceDaily. ScienceDaily, 25 November 2020. <www.sciencedaily.com/releases/2020/11/201125091506.htm>.
American Chemical Society. (2020, November 25). Patterning method could pave the way for new fiber-based devices, smart textiles. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2020/11/201125091506.htm
American Chemical Society. "Patterning method could pave the way for new fiber-based devices, smart textiles." ScienceDaily. www.sciencedaily.com/releases/2020/11/201125091506.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES