New! Sign up for our free email newsletter.
Science News
from research organizations

Transforming e-waste into a strong, protective coating for metal

Date:
July 29, 2020
Source:
American Chemical Society
Summary:
A typical recycling process converts large quantities of items made of a single material into more of the same. However, this approach isn't feasible for old electronic devices, or ''e-waste,'' because they contain small amounts of many different materials that cannot be readily separated. Now researchers report a selective, small-scale microrecycling strategy, which they use to convert old printed circuit boards and monitor components into a new type of strong metal coating.
Share:
FULL STORY

A typical recycling process converts large quantities of items made of a single material into more of the same. However, this approach isn't feasible for old electronic devices, or "e-waste," because they contain small amounts of many different materials that cannot be readily separated. Now, in ACS Omega, researchers report a selective, small-scale microrecycling strategy, which they use to convert old printed circuit boards and monitor components into a new type of strong metal coating.

In spite of the difficulty, there's plenty of reason to recycle e-waste: It contains many potentially valuable substances that can be used to modify the performance of other materials or to manufacture new, valuable materials. Previous research has shown that carefully calibrated high temperature-based processing can selectively break and reform chemical bonds in waste to form new, environmentally friendly materials. In this way, researchers have already turned a mix of glass and plastic into valuable, silica-containing ceramics. They've also used this process to recover copper, which is widely used in electronics and elsewhere, from circuit boards. Based on the properties of copper and silica compounds, Veena Sahajwalla and Rumana Hossain suspected that, after extracting them from e-waste, they could combine them to create a durable new hybrid material ideal for protecting metal surfaces.

To do so, the researchers first heated glass and plastic powder from old computer monitors to 2,732 F, generating silicon carbide nanowires. They then combined the nanowires with ground-up circuit boards, put the mix on a steel substrate then heated it up again. This time the thermal transformation temperature selected was 1,832 F, melting the copper to form a silicon-carbide enriched hybrid layer atop the steel. Microscope images revealed that, when struck with a nanoscale indenter, the hybrid layer remained firmly affixed to the steel, without cracking or chipping. It also increased the steel's hardness by 125%. The team refers to this targeted, selective microrecycling process as "material microsurgery," and say that it has the potential to transform e-waste into advanced new surface coatings without the use of expensive raw materials.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. Rumana Hossain, Veena Sahajwalla. Material Microsurgery: Selective Synthesis of Materials via High-Temperature Chemistry for Microrecycling of Electronic Waste. ACS Omega, 2020; 5 (28): 17062 DOI: 10.1021/acsomega.0c00485

Cite This Page:

American Chemical Society. "Transforming e-waste into a strong, protective coating for metal." ScienceDaily. ScienceDaily, 29 July 2020. <www.sciencedaily.com/releases/2020/07/200729124407.htm>.
American Chemical Society. (2020, July 29). Transforming e-waste into a strong, protective coating for metal. ScienceDaily. Retrieved December 20, 2024 from www.sciencedaily.com/releases/2020/07/200729124407.htm
American Chemical Society. "Transforming e-waste into a strong, protective coating for metal." ScienceDaily. www.sciencedaily.com/releases/2020/07/200729124407.htm (accessed December 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES