New! Sign up for our free email newsletter.
Science News
from research organizations

Genes sow seeds of neuropsychiatric conditions before birth, in early childhood

Date:
April 7, 2020
Source:
Yale University
Summary:
From early prenatal development through childhood, the prefrontal cortex of the human brain undergoes an avalanche of developmental activity. In some cases, it also contains seeds of neuropsychiatric conditions, according to a new genetic analysis.
Share:
FULL STORY

From early prenatal development through childhood, the prefrontal cortex of the human brain undergoes an avalanche of developmental activity. In some cases, it also contains seeds of neuropsychiatric conditions such as autism spectrum disorder and schizophrenia, according to a new genetic analysis led by researchers at Yale University and the University of California-San Francisco (UCSF).

Previous studies have identified DNA variants linked to neuropsychiatric conditions, but it has been unclear just when those variations might trigger functional changes in the dorsal lateral prefrontal cortex, a region closely linked to neuropsychiatric, cognitive, and emotional disorders. This new study, published April 7 in the journal Cell Reports, added a new dimension to prior research. The scientists also measured the amount of RNA, which provides a picture of overall gene activity, in 176 tissue samples across a variety of developmental stages to determine how and when DNA variants influence brain function.

"This is the first large cohort to profile DNA and RNA both in prenatal and postnatal human brain samples, making it an unprecedented resource for understanding how individual genetic differences might lead to functional differences," said Yale's Sirisha Pochareddy, an associate research scientist in neuroscience and co-lead author of the study.

Understanding how genetic variation and changes in function are linked will help scientists understand how alterations of brain development can lead to schizophrenia and autism later in life, said the authors of the study. Since the research tracked thousands of variants associated with thousands of genes across the entire genome, scientists can identify groups of genes that regulate distinct biological processes and study how they can lead to disease, they said.

"Human brain development is an incredibly complex and dynamic process, and any disruption along the way can have profound consequences on later brain function," said co-lead author Donna Werling, formerly of UCSF and now at the University of Wisconsin-Madison. "Interestingly, we found that some genetic variants have stronger effects on RNA expression before birth and other variants with strongest effects after birth."

Studying these age-specific effects can open more doors for learning about the mechanisms behind brain disorders, the authors said.

Yale's Nenad Sestan, the Harvey and Kate Cushing Professor in the Department of Neuroscience, and Stephan Sanders, an associate professor in the Weill Institute for Neurosciences at University of California-San Francisco are co-senior authors of the study.

Pochareddy, Werling and Joon-Yong An, formerly of UCSF, are co-lead authors, as is Jinmyung Choi, formerly of Yale.


Story Source:

Materials provided by Yale University. Original written by Bill Hathaway. Note: Content may be edited for style and length.


Journal Reference:

  1. Donna M. Werling, Sirisha Pochareddy, Jinmyung Choi, Joon-Yong An, Brooke Sheppard, Minshi Peng, Zhen Li, Claudia Dastmalchi, Gabriel Santpere, André M.M. Sousa, Andrew T.N. Tebbenkamp, Navjot Kaur, Forrest O. Gulden, Michael S. Breen, Lindsay Liang, Michael C. Gilson, Xuefang Zhao, Shan Dong, Lambertus Klei, A. Ercument Cicek, Joseph D. Buxbaum, Homa Adle-Biassette, Jean-Leon Thomas, Kimberly A. Aldinger, Diana R. O’Day, Ian A. Glass, Noah A. Zaitlen, Michael E. Talkowski, Kathryn Roeder, Matthew W. State, Bernie Devlin, Stephan J. Sanders, Nenad Sestan. Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex. Cell Reports, 2020; 31 (1): 107489 DOI: 10.1016/j.celrep.2020.03.053

Cite This Page:

Yale University. "Genes sow seeds of neuropsychiatric conditions before birth, in early childhood." ScienceDaily. ScienceDaily, 7 April 2020. <www.sciencedaily.com/releases/2020/04/200407164945.htm>.
Yale University. (2020, April 7). Genes sow seeds of neuropsychiatric conditions before birth, in early childhood. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2020/04/200407164945.htm
Yale University. "Genes sow seeds of neuropsychiatric conditions before birth, in early childhood." ScienceDaily. www.sciencedaily.com/releases/2020/04/200407164945.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES