New! Sign up for our free email newsletter.
Science News
from research organizations

Topological materials outperform through quantum periodic motion

Date:
February 18, 2020
Source:
DOE/Ames Laboratory
Summary:
Scientists have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible.
Share:
FULL STORY

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible.

Some topological materials are insulators in their bulk form, but possess electron-conducting behavior on their surfaces. While the differences in the behavior of these surface electrons is what makes these materials so promising for technological applications, it also presents a challenge: uncontrolled interactions between surface electrons and the bulk material states can cause electrons to scatter out of order, leading to so-called "topological breakdown." They are not protected by any "spontaneous" symmetry.

"Topological insulators that can sustain a persistent spin-locked current on their surfaces which does not decay are termed 'symmetry protected,' and that state is compelling for multiple revolutionary device concepts in quantum computing and spintronics," said Jigang Wang, Ames Laboratory physicist and Iowa State University professor. "But the topological breakdown due to surface-bulk coupling is a long standing scientific and engineering problem."

Wang and his fellow researchers took a paradoxical approach, called dynamic stabilization, by applying a terahertz electric field to drive periodic atomic vibrations, i.e., vibrational coherence, in the model topological insulator bismuth-selenium Bi2Se3. These extra "fluctuations" actually enhanced protected topological states, making the electronic excitations longer lived.

An analogy of such dynamic stabilization is the periodically driven Kapitza pendulum, known by Nobel Laureate Peter Kapitza, where an inverted, yet stable, orientation is achieved by imposing a sufficiently high-frequency vibration of its pivot point. In a similar manner, additional dynamic stabilization can be achieved by driving quantum periodic motions of the lattice.

"We demonstrate the dynamic stabilization in topological matter as a new universal tuning knob, that can be used to reinforce protected quantum transport," said Wang, who believes the discovery has far-reaching consequences for the use of these materials to many scientific and technological disciplines, such as disorder-tolerant quantum information and communications applications and spin-based, lightwave quantum electronics.


Story Source:

Materials provided by DOE/Ames Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Xu Yang, Liang Luo, Chirag Vaswani, Xin Zhao, Yongxin Yao, Di Cheng, Zhaoyu Liu, Richard H. J. Kim, Xinyu Liu, Malgorzata Dobrowolska-Furdyna, Jacek K. Furdyna, Ilias E. Perakis, Caizhuang Wang, Kaiming Ho, Jigang Wang. Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator. npj Quantum Materials, 2020; 5 (1) DOI: 10.1038/s41535-020-0215-7

Cite This Page:

DOE/Ames Laboratory. "Topological materials outperform through quantum periodic motion." ScienceDaily. ScienceDaily, 18 February 2020. <www.sciencedaily.com/releases/2020/02/200218143625.htm>.
DOE/Ames Laboratory. (2020, February 18). Topological materials outperform through quantum periodic motion. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2020/02/200218143625.htm
DOE/Ames Laboratory. "Topological materials outperform through quantum periodic motion." ScienceDaily. www.sciencedaily.com/releases/2020/02/200218143625.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES