New! Sign up for our free email newsletter.
Science News
from research organizations

Diversity of Plasmodium falciparum across Sub-Saharan Africa

Date:
September 5, 2019
Source:
Walter Reed Army Institute of Research
Summary:
Scientists have identified the regional character to Plasmodium falciparum across Africa. Malaria, infecting 219 million individuals in 2017, remains a threat to public health and regional stability. Human movement and the introduction of antimalarial drugs were drivers of this genetic diversity. Gene flow between sub-populations could spread resistance from one sub-population to the rest of the continent.
Share:
FULL STORY

Scientists from the Walter Reed Army Institute of Research joined a network of African scientists, the Plasmodium Diversity Network Africa, and Wellcome Trust Sanger Institute to publish a groundbreaking study about the genetic diversity of the world's most dangerous and prevalent species of malaria, Plasmodium falciparum across sub-Saharan Africa.

Malaria, infecting approximately 219 million individuals in 2017, remains a meaningful threat to public health and regional stability. One of the top five infectious disease threats to deployed Service Members, it is also a cause for concern for the U.S. military, whose investments in malaria research have supported the development of most FDA-approved malaria prevention and treatment drugs, as well as the world's most advanced malaria vaccine, RTS,S. Though infection rates have been decreasing, this decline has stagnated in recent years, necessitating novel interventions.

This study, published in Science, utilized whole genome data from 2263 P. falciparum isolates from 24 sites in 15 countries to provide novel insights into the depth of genetic diversity and distinct regional character of the parasite across the continent of Africa.

Human and natural history are the most likely explanations for the identified genetic variation. Human movement across the continent, driven at first by migration across the continent then subsequently colonization and slavery -- or lack thereof in the case of Ethiopia which was not colonized -- may explain the highly-differentiated parasite population from the rest of Africa. By contrast, parasites from distant former French colonies share genetic material.

The introduction of malaria drugs has also had a major impact on the divergence of the parasite. New signatures found in P. falciparum in Malawi and Ghana may be due to the selection pressure introduced by artemisinin-based combination therapies, first-line treatment for uncomplicated malaria in most of Africa. Geneflow between subpopulations could spread drug resistance from one subpopulation to the rest of the continent.

"Malaria is one of the most important parasitic diseases with one of the largest genomes dedicated to immune escape, a shape shifter that morphs into more than 12 different shapes and stages in two hostile environments in the human host and the vector," said Lt. Col. Edwin Kamau, an author on the paper and scientist at WRAIR, underscoring the difficulty of malaria control and elimination.

As malaria drug resistance develops and spreads between the distinct P. falciparum populations facilitated by human movement in all directions across Africa, understanding the regional characteristics of the parasites becomes increasingly critical to ensuring targeted, effective interventions. "The race is on to identify and validate drug resistance markers for ACTs and other interventions in Africa and other malaria endemic parts of the world," said Dr. Ben Andagalu another author on the paper who is at the U.S. Army Medical Research Directorate-Africa, a subordinate directorate of the WRAIR headquartered in Kenya.

WRAIR and its partners remain committed to developing novel interventions to prevent the transmission of malaria, including mosquito repellents, chemoprophylaxis, biologics and more in order to eliminate the threat towards Service Members.


Story Source:

Materials provided by Walter Reed Army Institute of Research. Note: Content may be edited for style and length.


Journal Reference:

  1. Alfred Amambua-Ngwa, Lucas Amenga-Etego, Edwin Kamau, Roberto Amato, Anita Ghansah, Lemu Golassa, Milijaona Randrianarivelojosia, Deus Ishengoma, Tobias Apinjoh, Oumou Maïga-Ascofaré, Ben Andagalu, William Yavo, Marielle Bouyou-Akotet, Oyebola Kolapo, Karim Mane, Archibald Worwui, David Jeffries, Vikki Simpson, Umberto D’Alessandro, Dominic Kwiatkowski, Abdoulaye A. Djimde. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science, 2019; 365 (6455): 813 DOI: 10.1126/science.aav5427

Cite This Page:

Walter Reed Army Institute of Research. "Diversity of Plasmodium falciparum across Sub-Saharan Africa." ScienceDaily. ScienceDaily, 5 September 2019. <www.sciencedaily.com/releases/2019/09/190905145404.htm>.
Walter Reed Army Institute of Research. (2019, September 5). Diversity of Plasmodium falciparum across Sub-Saharan Africa. ScienceDaily. Retrieved November 24, 2024 from www.sciencedaily.com/releases/2019/09/190905145404.htm
Walter Reed Army Institute of Research. "Diversity of Plasmodium falciparum across Sub-Saharan Africa." ScienceDaily. www.sciencedaily.com/releases/2019/09/190905145404.htm (accessed November 24, 2024).

Explore More

from ScienceDaily

RELATED STORIES