New! Sign up for our free email newsletter.
Science News
from research organizations

Keep the light off: A material with improved mechanical performance in the dark

Date:
May 17, 2018
Source:
Nagoya University
Summary:
Researchers found that zinc sulfide crystals were brittle under normal lighting conditions at room temperature, but highly plastic when deformed in complete darkness. Deformation of zinc sulfide crystals in the dark also narrowed their band gap, which controls electrical conductivity. The team's findings showed the mechanical and electronic properties of inorganic semiconductors are sensitive to light, revealing a possible route to engineer the performance of inorganic semiconductors, which are important in electronics.
Share:
FULL STORY

Researchers found that zinc sulfide crystals were brittle under normal lighting conditions at room temperature, but highly plastic when deformed in complete darkness. Deformation of zinc sulfide crystals in the dark also narrowed their band gap, which controls electrical conductivity. The team's findings showed the mechanical and electronic properties of inorganic semiconductors are sensitive to light, revealing a possible route to engineer the performance of inorganic semiconductors, which are important in electronics.

Inorganic semiconductors such as silicon are indispensable in modern electronics because they possess tunable electrical conductivity between that of a metal and that of an insulator. The electrical conductivity of a semiconductor is controlled by its band gap, which is the energy difference between its valence and conduction bands; a narrow band gap results in increased conductivity because it is easier for an electron to move from the valence to the conduction band. However, inorganic semiconductors are brittle, which can lead to device failure and limits their application range, particularly in flexible electronics.

A group at Nagoya University recently discovered that an inorganic semiconductor behaved differently in the dark compared with in the light. They found that crystals of zinc sulfide (ZnS), a representative inorganic semiconductor, were brittle when exposed to light but flexible when kept in the dark at room temperature. The findings were published in Science.

"The influence of complete darkness on the mechanical properties of inorganic semiconductors had not previously been investigated," study coauthor Atsutomo Nakamura says. "We found that ZnS crystals in complete darkness displayed much higher plasticity than those under light exposure."

The ZnS crystals in the dark deformed plastically without fracture until a large strain of 45%. The team attributed the increased plasticity of the ZnS crystals in the dark to the high mobility of dislocations in complete darkness. Dislocations are a type of defect found in crystals and are known to influence crystal properties. Under light exposure, the ZnS crystals were brittle because their deformation mechanism was different from that in the dark.

The high plasticity of the ZnS crystals in the dark was accompanied by a considerable decrease in the band gap of the deformed crystals. Thus, the band gap of ZnS crystals and in turn their electrical conductivity may be controlled by mechanical deformation in the dark. The team proposed that the decreased band gap of the deformed crystals was caused by deformation introducing dislocations into the crystals, which changed their band structure.

"This study reveals the sensitivity of the mechanical properties of inorganic semiconductors to light," coauthor Katsuyuki Matsunaga says. "Our findings may allow development of technology to engineer crystals through controlled light exposure."

The researchers' results suggest that the strength, brittleness, and conductivity of inorganic semiconductors may be regulated by light exposure, opening an interesting avenue to optimize the performance of inorganic semiconductors in electronics.


Story Source:

Materials provided by Nagoya University. Note: Content may be edited for style and length.


Journal Reference:

  1. Yu Oshima, Atsutomo Nakamura, Katsuyuki Matsunaga. Extraordinary plasticity of an inorganic semiconductor in darkness. Science, 2018; 360 (6390): 772 DOI: 10.1126/science.aar6035

Cite This Page:

Nagoya University. "Keep the light off: A material with improved mechanical performance in the dark." ScienceDaily. ScienceDaily, 17 May 2018. <www.sciencedaily.com/releases/2018/05/180517142553.htm>.
Nagoya University. (2018, May 17). Keep the light off: A material with improved mechanical performance in the dark. ScienceDaily. Retrieved January 24, 2025 from www.sciencedaily.com/releases/2018/05/180517142553.htm
Nagoya University. "Keep the light off: A material with improved mechanical performance in the dark." ScienceDaily. www.sciencedaily.com/releases/2018/05/180517142553.htm (accessed January 24, 2025).

Explore More

from ScienceDaily

RELATED STORIES