New! Sign up for our free email newsletter.
Science News
from research organizations

New microscope sets a record for visualizing surface wetting properties

Date:
November 27, 2017
Source:
Aalto University
Summary:
Wetting is an everyday phenomenon that represents how well liquid spreads on a surface. When water comes into contact with an extremely water-repellent, or ‘superhydrophobic’ surface, droplets bead up and roll off easily. Researchers have developed a measurement technique called Scanning Droplet Adhesion Microscopy (SDAM) to understand and characterize the wetting properties of superhydrophobic materials.
Share:
FULL STORY

Wetting is an everyday phenomenon that represents how well liquid spreads on a surface. When water comes into contact with an extremely water-repellent, or 'superhydrophobic' surface, droplets bead up and roll off easily. Aalto University researchers have developed a measurement technique called Scanning Droplet Adhesion Microscopy (SDAM) to understand and characterize the wetting properties of superhydrophobic materials.

"Our novel microscope will promote the understanding of how wetting emerges from surface microstructures. The measuring instrument can also detect microscopic defects of the surface, which could allow coating manufacturers to control the quality of materials. Defects in self-cleaning, anti-icing, anti-fogging, anti-corrosion or anti-biofouling products can impeach the functional integrity of the whole surface," explains Professor Robin Ras from Aalto University School of Science.

SDAM is extremely sensitive and 1000 times more precise than the current state-of-the-art wetting characterization methods. It also has the ability to measure minuscule features and inconsistencies of surfaces with microscale resolution. Existing instruments for measuring droplet adhesion forces only detect forces down to a micronewton level -- not sensitive enough for superhydrophobic surfaces.

"We have used a droplet of water to measure the water-repellent properties of a surface by recording the very tiny nanonewton force when the droplet touches the surface and when it separates from the surface. By measuring on many locations with micrometer spacing between the measurement points, we can construct a two-dimensional image of the surface's repellency, called a wetting map," explains Professor Quan Zhou from Aalto University School of Electrical Engineering.

Wetting maps are a new concept for hydrophobic surface characterization and open a window for investigating structure-property relationships in surface wetting.

Up to now, 'contact angle measurement' has been the typical method of measuring wetting properties of surfaces. It is prone to inaccuracies, though, for surfaces that are highly repellent to liquid. Unlike contact angle measurement, SDAM does not require a direct line of sight, which allows measuring uneven surfaces such as fabrics or biological surfaces. SDAM can also detect wetting properties of microscopic functional features that were previously very hard to measure. Those microscopic features are important in many biochips, chemical sensors and microelectromechanical components and systems.

The research is conducted by an interdisciplinary team from three schools of Aalto University: School of Electrical Engineering, School of Science, and School of Chemical Engineering. The researchers involved in the study are Ville Liimatainen, Maja Vuckovac, Ville Jokinen, Veikko Sariola, Matti Hokkanen, Quan Zhou and Robin Ras.


Story Source:

Materials provided by Aalto University. Note: Content may be edited for style and length.


Journal Reference:

  1. Ville Liimatainen, Maja Vuckovac, Ville Jokinen, Veikko Sariola, Matti J. Hokkanen, Quan Zhou, Robin H. A. Ras. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces. Nature Communications, 2017; 8 (1) DOI: 10.1038/s41467-017-01510-7

Cite This Page:

Aalto University. "New microscope sets a record for visualizing surface wetting properties." ScienceDaily. ScienceDaily, 27 November 2017. <www.sciencedaily.com/releases/2017/11/171127093104.htm>.
Aalto University. (2017, November 27). New microscope sets a record for visualizing surface wetting properties. ScienceDaily. Retrieved January 17, 2025 from www.sciencedaily.com/releases/2017/11/171127093104.htm
Aalto University. "New microscope sets a record for visualizing surface wetting properties." ScienceDaily. www.sciencedaily.com/releases/2017/11/171127093104.htm (accessed January 17, 2025).

Explore More

from ScienceDaily

RELATED STORIES