New! Sign up for our free email newsletter.
Science News
from research organizations

Superbug's 'CPU' revealed: Researchers discover chemical clue directing Staphylococcus aureus

Date:
June 4, 2010
Source:
McMaster University
Summary:
Researchers have revealed that a small chemical, made by the superbug Staphylococcus aureus and its drug-resistant forms, determines this disease's strength and ability to infect.
Share:
FULL STORY

McMaster University researchers have discovered a central controller or processing unit (CPU) of a superbug's weaponry.

The team from the Michael G. DeGroote Institute for Infectious Disease Research has revealed that a small chemical, made by the superbug Staphylococcus aureus and its drug-resistant forms, determines this disease's strength and ability to infect.

The bacteria is the cause for a wide range of difficult-to-treat human infectious diseases such as pneumonia, toxic-shock syndrome and flesh-eating diseases. It has become known as the superbug as it has become increasingly resistant to antibiotics and especially troublesome in hospitals.

The discovery will provide new options for fight back and disable the virulent bacteria.

"We've found that when these small chemicals in the bacteria are shut down, the bacteria is rendered non-functional and non-infectious," said Nathan Magarvey, principal investigator for the study and an assistant professor of biochemistry and biomedical sciences at McMaster. "We're now set on hacking into this pathogen and making its system crash."

To identify these "pathogen small molecule CPUs," the researchers used cutting-edge chemical mining tools to reveal the molecular wiring associated with their formation. Then, to uncover its function, the McMaster scientists shut off its synthesis, showing that the deadly pathogens had been tamed and unable to burst open red blood cells.

The McMaster team also collaborated with the University of Western Ontario and the University of Nebraska to further delve into how this "small molecule CPU" works and functions to engage Staphylococcus aureus in its destructive and harmful behaviors.

An article on the breakthrough appears in the journal Science.


Story Source:

Materials provided by McMaster University. Note: Content may be edited for style and length.


Journal Reference:

  1. Morgan A. Wyatt, Wenliang Wang, Christelle M. Roux, Federico C. Beasley, David E. Heinrichs, Paul M. Dunman, and Nathan A. Magarvey. Staphylococcus aureus Nonribosomal Peptide Secondary Metabolites Regulate Virulence. Science, 2010; DOI: 10.1126/science.1188888

Cite This Page:

McMaster University. "Superbug's 'CPU' revealed: Researchers discover chemical clue directing Staphylococcus aureus." ScienceDaily. ScienceDaily, 4 June 2010. <www.sciencedaily.com/releases/2010/06/100603172223.htm>.
McMaster University. (2010, June 4). Superbug's 'CPU' revealed: Researchers discover chemical clue directing Staphylococcus aureus. ScienceDaily. Retrieved November 22, 2024 from www.sciencedaily.com/releases/2010/06/100603172223.htm
McMaster University. "Superbug's 'CPU' revealed: Researchers discover chemical clue directing Staphylococcus aureus." ScienceDaily. www.sciencedaily.com/releases/2010/06/100603172223.htm (accessed November 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES