New! Sign up for our free email newsletter.
Science News
from research organizations

Astrophysics: Scientists observe high-speed star formation

Date:
February 17, 2023
Source:
University of Cologne
Summary:
New observations have brought to light that stars can form through the dynamic interaction of gas within interstellar gas clouds. This process unfolds faster than previously assumed, research within the FEEDBACK programme on board the flying observatory SOFIA revealed.
Share:
FULL STORY

Even though SOFIA is no longer in operation, the data collected so far are essential for basic astronomical research because there is no longer an instrument that extensively maps the sky in this wavelength range (typically 60 to 200 micrometres). The now active James Webb Space Telescope observes in the infrared at shorter wavelengths and focuses on spatially small areas. Therefore, the analysis of the data collected by SOFIA is ongoing and continues to provide important insights – also regarding other star-forming regions: “In the list of FEEDBACK sources, there are other gas clouds in different stages of evolution, where we are now looking for the weak CII radiation at the peripheries of the clouds to detect similar interactions as in the Cygnus X region,” Schneider concluded.

al standards. The results of the study ‘Ionized carbon as a tracer for the assembly of interstellar clouds’ will appear in the next issue of Nature Astronomy.

The observations were carried out in an international project led by Dr Nicola Schneider at the University of Cologne and Prof Alexander Tielens at the University of Maryland as part of the FEEDBACK programme on board the flying observatory SOFIA (Stratospheric Observatory for Infrared Astronomy). The new findings modify previous perceptions that this specific process of star formation is quasi-static and quite slow. The dynamic formation process now observed would also explain the formation of particularly massive stars.

By comparing the distribution of ionized carbon, molecular carbon monoxide and atomic hydrogen, the team found that the shells of interstellar gas clouds are made of hydrogen and collide with each other at speeds of up to twenty kilometres per second. “This high speed compresses the gas into denser molecular regions where new, mainly massive stars form. We needed the CII observations to detect this otherwise ‘dark’ gas,” said Dr Schneider. The observations show for the first time the faint CII radiation from the periphery of the clouds, which could not be observed before. Only SOFIA and its sensitive instruments were capable of detecting this radiation.

SOFIA was operated by NASA and the German Aerospace Center (DLR) until September 2022. The observatory consisted of a converted Boeing 747 with a built-in 2.7-metre telescope. It was coordinated by the German SOFIA Institute (DSI) and the Universities Space Research Association (USRA). SOFIA observed the sky from the stratosphere (above 13 kilometres) and covered the infrared region of the electromagnetic spectrum, just beyond what humans can see. The Boeing thus flew above most of the water vapour in the Earth’s atmosphere, which otherwise blocks out infrared light. This allowed the scientists to observe a wavelength range that is not accessible from Earth. For the current results, the team used the upGREAT receiver installed on SOFIA in 2015 by the Max Planck Institute for Radio Astronomy in Bonn and the University of Cologne.

Even though SOFIA is no longer in operation, the data collected so far are essential for basic astronomical research because there is no longer an instrument that extensively maps the sky in this wavelength range (typically 60 to 200 micrometres). The now active James Webb Space Telescope observes in the infrared at shorter wavelengths and focuses on spatially small areas. Therefore, the analysis of the data collected by SOFIA is ongoing and continues to provide important insights – also regarding other star-forming regions: “In the list of FEEDBACK sources, there are other gas clouds in different stages of evolution, where we are now looking for the weak CII radiation at the peripheries of the clouds to detect similar interactions as in the Cygnus X region,” Schneider concluded.


Story Source:

Materials provided by University of Cologne. Note: Content may be edited for style and length.


Journal Reference:

  1. Nicola Schneider, Lars Bonne, Sylvain Bontemps, Slawa Kabanovic, Robert Simon, Volker Ossenkopf-Okada, Christof Buchbender, Jürgen Stutzki, Marc Mertens, Oliver Ricken, Timea Csengeri, Alexander G.G.M. Tielens. Ionized carbon as a tracer of the assembly of interstellar clouds. Nature Astronomy, 2023; DOI: 10.1038/s41550-023-01901-5

Cite This Page:

University of Cologne. "Astrophysics: Scientists observe high-speed star formation." ScienceDaily. ScienceDaily, 17 February 2023. <www.sciencedaily.com/releases/2023/02/230217103934.htm>.
University of Cologne. (2023, February 17). Astrophysics: Scientists observe high-speed star formation. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2023/02/230217103934.htm
University of Cologne. "Astrophysics: Scientists observe high-speed star formation." ScienceDaily. www.sciencedaily.com/releases/2023/02/230217103934.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES