New! Sign up for our free email newsletter.
Science News
from research organizations

New study shows 'self-cleaning' of marine atmosphere

Date:
January 18, 2023
Source:
University of York
Summary:
Scientists have shed new light on the 'self-cleaning' capacity of the atmosphere.
Share:
FULL STORY

Scientists have shed new light on the 'self-cleaning' capacity of the atmosphere.

This process of self-cleaning is essential to remove gaseous pollutants and regulate greenhouse gases such as methane from the atmosphere.

Researchers were already aware that the atmosphere had this 'self-cleaning' ability, but in a new study from the University York, experts have now shown a new process that increases the ability of the marine atmosphere to self-cleanse.

Using a combination of aircraft and ground-based observations, scientists were able to confirm the widespread presence of nitrous oxide (HONO) in the remote Atlantic troposphere formed by so-called "renoxification," whereby photolysis of aerosol nitrate returns nitrogen oxides (NOx) and HONO to the marine atmosphere.

Historically, aerosol nitrate had been considered a permanent sink for NOx. This new process could increase the ability of the atmosphere to self-cleanse on a global scale.

Scientists say the findings, published in Sciences Advances, could be highly significant for atmospheric chemistry and largely reconcile widespread uncertainty on the importance of renoxification.

With funding from the Natural Environmental Research Council (NERC), scientists from the Wolfson Atmospheric Chemistry Laboratories (WACL) led extensive aircraft and ground-based observations in and around Cape Verde in August 2019 and February 2020.

Lead author, Professor Lucy Carpenter said: "Importantly, the observations showed that the efficiency of renoxification increased with relative humidity and decreased with the concentration of nitrate.

"This observation reconciled the very large discrepancies in the rates of renoxification found across multiple laboratory and field studies.

"It was also consistent with renoxification occurring on the surface of aerosols, rather than within their bulk, a new and exciting finding with implications for how this fundamental process is controlled and parameterised in models."

Recycling of nitrogen oxides on nitrate aerosol could have important, increasing, and as yet unexplored implications for the trends and distributions of atmospheric oxidants such as tropospheric ozone, an important greenhouse gas.


Story Source:

Materials provided by University of York. Note: Content may be edited for style and length.


Journal Reference:

  1. Simone T. Andersen, Lucy J. Carpenter, Chris Reed, James D. Lee, Rosie Chance, Tomás Sherwen, Adam R. Vaughan, Jordan Stewart, Pete M. Edwards, William J. Bloss, Roberto Sommariva, Leigh R. Crilley, Graeme J. Nott, Luis Neves, Katie Read, Dwayne E. Heard, Paul W. Seakins, Lisa K. Whalley, Graham A. Boustead, Lauren T. Fleming, Daniel Stone, Khanneh Wadinga Fomba. Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols. Science Advances, 2023; 9 (3) DOI: 10.1126/sciadv.add6266

Cite This Page:

University of York. "New study shows 'self-cleaning' of marine atmosphere." ScienceDaily. ScienceDaily, 18 January 2023. <www.sciencedaily.com/releases/2023/01/230118195816.htm>.
University of York. (2023, January 18). New study shows 'self-cleaning' of marine atmosphere. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2023/01/230118195816.htm
University of York. "New study shows 'self-cleaning' of marine atmosphere." ScienceDaily. www.sciencedaily.com/releases/2023/01/230118195816.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES